Algebro-geometric solutions of the modified Jaulent-Miodek hierarchy

被引:2
|
作者
Gao, Huan [1 ]
Wang, Deng-Shan [1 ]
Zhao, Peng [2 ]
机构
[1] Normal Univ Beijing, Lab Math & Complex Syst, Sch Math Sci, Minist Educ, Beijing 100875, Peoples R China
[2] Shanghai Maritime Univ, Coll Sci, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Lax pair; modified Jaulent-Miodek hierarchy; Baker-Akhiezer function; algebro-geometric solutions; INTEGRABLE SYSTEMS; EQUATION;
D O I
10.1142/S0219887823502390
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
According to the polynomial recursion formalism, the modified Jaulent-Miodek hierarchy is derived in a standard way. The first two nontrivial members in the modified Jaulent-Miodek hierarchy are listed correspondingly. Based on the squared eigenfunctions, an algebraic curve ?n and a Riemann surface S with arithmetic genus n are introduced, then the Dubrovin-type equations are obtained naturally. With the help of the conservation laws, the Baker-Akhiezer functions are defined. Finally, the asymptotic properties of the Baker-Akhiezer functions are analyzed, from which the algebro-geometric solutions of the modified Jaulent-Miodek hierarchy are constructed in term of the Riemann theta function.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Decomposition to the modified Jaulent-Miodek hierarchy
    Chen, Jinbing
    Geng, Xianguo
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 797 - 803
  • [2] A HIERARCHY OF HAMILTONIAN EQUATIONS ASSOCIATED WITH THE MODIFIED JAULENT-MIODEK HIERARCHY
    Ding, Hai-Yong
    Yang, Hong-Xiang
    Sun, Ye-Peng
    Zhu, Li-Li
    [J]. MODERN PHYSICS LETTERS B, 2010, 24 (02): : 183 - 193
  • [3] Jacobi Inversion Problem for the Modified Jaulent-Miodek Hierarchy
    林润亮
    曾云波
    [J]. Tsinghua Science and Technology, 1998, (04) : 1253 - 1259
  • [4] A hierarchy of generalized Jaulent-Miodek equations and their explicit solutions
    Geng, Xianguo
    Guan, Liang
    Xue, Bo
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (01)
  • [5] NEW SYMMETRIES OF THE JAULENT-MIODEK HIERARCHY
    RUAN, HY
    LOU, SY
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (06) : 1917 - 1921
  • [6] Algebro-geometric solutions to the Manakov hierarchy
    Wu, Lihua
    Geng, Xianguo
    He, Guoliang
    [J]. APPLICABLE ANALYSIS, 2016, 95 (04) : 769 - 800
  • [7] ALGEBRO-GEOMETRIC SOLUTIONS OF THE DIRAC HIERARCHY
    Yang, Xiao
    Han, Jiayan
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 193 (03) : 1894 - 1904
  • [8] Algebro-geometric solutions of the Boussinesq hierarchy
    Dickson, R
    Gesztesy, F
    Unterkofler, K
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (07) : 823 - 879
  • [9] Algebro-geometric solutions of the Dirac hierarchy
    Xiao Yang
    Jiayan Han
    [J]. Theoretical and Mathematical Physics, 2017, 193 : 1894 - 1904
  • [10] Algebro-Geometric Solutions of the TD Hierarchy
    Geng, Xianguo
    Zeng, Xin
    Xue, Bo
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2013, 16 (03) : 229 - 251