Algebro-geometric solutions of the modified Jaulent-Miodek hierarchy

被引:2
|
作者
Gao, Huan [1 ]
Wang, Deng-Shan [1 ]
Zhao, Peng [2 ]
机构
[1] Normal Univ Beijing, Lab Math & Complex Syst, Sch Math Sci, Minist Educ, Beijing 100875, Peoples R China
[2] Shanghai Maritime Univ, Coll Sci, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Lax pair; modified Jaulent-Miodek hierarchy; Baker-Akhiezer function; algebro-geometric solutions; INTEGRABLE SYSTEMS; EQUATION;
D O I
10.1142/S0219887823502390
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
According to the polynomial recursion formalism, the modified Jaulent-Miodek hierarchy is derived in a standard way. The first two nontrivial members in the modified Jaulent-Miodek hierarchy are listed correspondingly. Based on the squared eigenfunctions, an algebraic curve ?n and a Riemann surface S with arithmetic genus n are introduced, then the Dubrovin-type equations are obtained naturally. With the help of the conservation laws, the Baker-Akhiezer functions are defined. Finally, the asymptotic properties of the Baker-Akhiezer functions are analyzed, from which the algebro-geometric solutions of the modified Jaulent-Miodek hierarchy are constructed in term of the Riemann theta function.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] On algebro-geometric solutions of the Camassa-Holm hierarchy
    Zampogni, Luca
    [J]. ADVANCED NONLINEAR STUDIES, 2007, 7 (03) : 345 - 380
  • [32] Algebro-Geometric Solutions of the Sine-Gordon Hierarchy
    Xue Geng
    Liang Guan
    [J]. Journal of Nonlinear Mathematical Physics, 2023, 30 : 114 - 134
  • [33] ALGEBRO-GEOMETRIC SOLUTIONS FOR THE DEGASPERIS-PROCESI HIERARCHY
    Hou, Yu
    Zhao, Peng
    Fan, Engui
    Qiao, Zhijun
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1216 - 1266
  • [34] Algebro-geometric solutions for the Gerdjikov-Ivanov hierarchy
    Hou, Yu
    Fan, Engui
    Zhao, Peng
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
  • [35] Algebro-Geometric Integration of the Modified BelovChaltikian Lattice Hierarchy
    Geng, Xianguo
    Wei, Jiao
    Zeng, Xin
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 199 (02) : 675 - 694
  • [36] Quasiperiodic solutions of Jaulent-Miodek equations with a negative flow
    Xue, Bo
    Geng, Xianguo
    Li, Fang
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (06)
  • [37] Bifurcations of travelling wave solutions for Jaulent-Miodek equations
    Da-He, Feng
    Ji-Bin, Li
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (08) : 999 - 1005
  • [38] Algebro-Geometric Integration of the Modified Belov—Chaltikian Lattice Hierarchy
    Xianguo Geng
    Jiao Wei
    Xin Zeng
    [J]. Theoretical and Mathematical Physics, 2019, 199 : 675 - 694
  • [39] Algebro-geometric solutions for the Ruijs']jsenaars-Toda hierarchy
    Zhao, Peng
    Fan, Engui
    Hou, Yu
    [J]. CHAOS SOLITONS & FRACTALS, 2013, 54 : 8 - 25
  • [40] Bifurcations of travelling wave solutions for Jaulent-Miodek equations
    冯大河
    李继彬
    [J]. Applied Mathematics and Mechanics(English Edition), 2007, (08) : 999 - 1005