Algebro-geometric solutions of the modified Jaulent-Miodek hierarchy

被引:2
|
作者
Gao, Huan [1 ]
Wang, Deng-Shan [1 ]
Zhao, Peng [2 ]
机构
[1] Normal Univ Beijing, Lab Math & Complex Syst, Sch Math Sci, Minist Educ, Beijing 100875, Peoples R China
[2] Shanghai Maritime Univ, Coll Sci, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Lax pair; modified Jaulent-Miodek hierarchy; Baker-Akhiezer function; algebro-geometric solutions; INTEGRABLE SYSTEMS; EQUATION;
D O I
10.1142/S0219887823502390
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
According to the polynomial recursion formalism, the modified Jaulent-Miodek hierarchy is derived in a standard way. The first two nontrivial members in the modified Jaulent-Miodek hierarchy are listed correspondingly. Based on the squared eigenfunctions, an algebraic curve ?n and a Riemann surface S with arithmetic genus n are introduced, then the Dubrovin-type equations are obtained naturally. With the help of the conservation laws, the Baker-Akhiezer functions are defined. Finally, the asymptotic properties of the Baker-Akhiezer functions are analyzed, from which the algebro-geometric solutions of the modified Jaulent-Miodek hierarchy are constructed in term of the Riemann theta function.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Algebro-Geometric Solutions and Their Reductions for the Fokas-Lenells Hierarchy
    Zhao, Peng
    Fan, Engui
    Hou, Yu
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (03) : 355 - 393
  • [42] JAULENT-MIODEK TRANSFORMATION IS CANONICAL
    GUERRERO, FG
    MARTINEZALONSO, L
    [J]. LETTERE AL NUOVO CIMENTO, 1980, 27 (03): : 85 - 88
  • [43] ALGEBRO-GEOMETRIC SOLUTIONS OF THE DISCRETE RAGNISCO-TU HIERARCHY
    Zeng, Xin
    Geng, Xianguo
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2014, 73 (01) : 17 - 48
  • [44] Physical structure and multiple solitary wave solutions for the nonlinear Jaulent-Miodek hierarchy equation
    Iqbal, Mujahid
    Seadawy, Aly R.
    Lu, Dianchen
    Zhang, Zhengdi
    [J]. MODERN PHYSICS LETTERS B, 2024, 38 (16):
  • [45] On Algebro-Geometric Simply-Periodic Solutions of the KdV Hierarchy
    Chen, Zhijie
    Lin, Chang-Shou
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (01) : 111 - 144
  • [46] On Algebro-Geometric Simply-Periodic Solutions of the KdV Hierarchy
    Zhijie Chen
    Chang-Shou Lin
    [J]. Communications in Mathematical Physics, 2020, 374 : 111 - 144
  • [47] A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy
    Gesztesy, F
    Weikard, R
    [J]. ACTA MATHEMATICA, 1998, 181 (01) : 63 - 108
  • [48] Bifurcations of travelling wave solutions for Jaulent-Miodek equations
    Da-he Feng
    Ji-bin Li
    [J]. Applied Mathematics and Mechanics, 2007, 28 : 999 - 1005
  • [49] Straightening out of the flows for the Hu hierarchy and its algebro-geometric solutions
    Zhai, Yunyun
    Geng, Xianguo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) : 561 - 576
  • [50] Jaulent-Miodek evolution equation: Analytical methods and various solutions
    Akkilic, Ayse Nur
    Sulaiman, Tukur Abdulkadir
    Shakir, Azad Piro
    Ismael, Hajar F.
    Bulut, Hasan
    Shah, Nehad Ali
    Alif, Mohamed R.
    [J]. RESULTS IN PHYSICS, 2023, 47