Jacobi Inversion Problem for the Modified Jaulent-Miodek Hierarchy

被引:0
|
作者
林润亮
曾云波
机构
关键词
constrained flow; Lax matrix; r\|matrix; separation of variables; Jacobi inversion problem;
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
070104 ;
摘要
The r\|matrices and classical Poisson structures are constructed for x\| and t n\|constrained flows of the modified Jaulent\|Miodek (MJM) hierarchy.The Lax matrix is used to study the separation of variables method for these constrained flows. The Jacobi inversion problem for the MJM equation is obtained through the factorization of the MJM equation and the separability of the constrained flows. This is analogous to separation of variables for solving the MJM equation.
引用
收藏
页码:1253 / 1259
页数:7
相关论文
共 50 条
  • [1] Decomposition to the modified Jaulent-Miodek hierarchy
    Chen, Jinbing
    Geng, Xianguo
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 797 - 803
  • [2] A HIERARCHY OF HAMILTONIAN EQUATIONS ASSOCIATED WITH THE MODIFIED JAULENT-MIODEK HIERARCHY
    Ding, Hai-Yong
    Yang, Hong-Xiang
    Sun, Ye-Peng
    Zhu, Li-Li
    [J]. MODERN PHYSICS LETTERS B, 2010, 24 (02): : 183 - 193
  • [3] NEW SYMMETRIES OF THE JAULENT-MIODEK HIERARCHY
    RUAN, HY
    LOU, SY
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (06) : 1917 - 1921
  • [4] Algebro-geometric solutions of the modified Jaulent-Miodek hierarchy
    Gao, Huan
    Wang, Deng-Shan
    Zhao, Peng
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (02)
  • [5] The integrable couplings of the Modified Jaulent-Miodek hierarchy and its Hamiltonian structure
    Zhang, Jiao
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 138 - 144
  • [6] Hamiltonian structure of the integrable coupling of the Jaulent-Miodek hierarchy
    Zhang, WF
    Fan, EG
    [J]. PHYSICS LETTERS A, 2006, 348 (3-6) : 180 - 186
  • [7] A hierarchy of generalized Jaulent-Miodek equations and their explicit solutions
    Geng, Xianguo
    Guan, Liang
    Xue, Bo
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (01)
  • [8] Darboux transformation and Hamiltonian structure for the Jaulent-Miodek hierarchy
    Xue, Yu-Shan
    Tian, Bo
    Ai, Wen-Bao
    Jiang, Yan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) : 11738 - 11750
  • [9] JAULENT-MIODEK TRANSFORMATION IS CANONICAL
    GUERRERO, FG
    MARTINEZALONSO, L
    [J]. LETTERE AL NUOVO CIMENTO, 1980, 27 (03): : 85 - 88
  • [10] NEW SOLITARY WAVE SOLUTIONS FOR THE FRACTIONAL JAULENT-MIODEK HIERARCHY MODEL
    Wei, Chun Fu
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (05)