Algebro-geometric solutions to the Manakov hierarchy

被引:19
|
作者
Wu, Lihua [1 ]
Geng, Xianguo [2 ]
He, Guoliang [3 ]
机构
[1] Huaqiao Univ, Dept Math, Quanzhou 362021, Fujian, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Manakov hierarchy; algebro-geometric solution; trigonal curve; 35Q55; 35Q51; 37K10; 37K20; NONLINEAR SCHRODINGER-EQUATIONS; QUASI-PERIODIC SOLUTIONS; SHAPE-CHANGING COLLISIONS; EXACT SOLITON-SOLUTIONS; BRIGHT; FLOWS; DECOMPOSITION; INTEGRABILITY; CONSERVATION; PERTURBATION;
D O I
10.1080/00036811.2015.1031220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Manakov hierarchy associated with a [GRAPHICS] matrix spectral problem is proposed with the aid of Lenard recursion equations. By using the characteristic polynomial of Lax matrix for the Manakov hierarchy, we introduce a trigonal curve [GRAPHICS] of arithmetic genus [GRAPHICS] , from which we construct the related Baker-Akhiezer function, two algebraic functions carrying the data of the divisor and Dubrovin-type equations. Based on the theory of trigonal curves, the explicit theta function representations of the Baker-Akhiezer function, the two algebraic functions, and in particular, that of solutions for the entire Manakov hierarchy are obtained.
引用
收藏
页码:769 / 800
页数:32
相关论文
共 50 条
  • [1] ALGEBRO-GEOMETRIC SOLUTIONS OF THE DIRAC HIERARCHY
    Yang, Xiao
    Han, Jiayan
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 193 (03) : 1894 - 1904
  • [2] Algebro-geometric solutions of the Boussinesq hierarchy
    Dickson, R
    Gesztesy, F
    Unterkofler, K
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (07) : 823 - 879
  • [3] Algebro-Geometric Solutions of the TD Hierarchy
    Geng, Xianguo
    Zeng, Xin
    Xue, Bo
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2013, 16 (03) : 229 - 251
  • [4] Algebro-geometric solutions of the Dirac hierarchy
    Xiao Yang
    Jiayan Han
    [J]. Theoretical and Mathematical Physics, 2017, 193 : 1894 - 1904
  • [5] Algebro-Geometric Solutions of the TD Hierarchy
    Xianguo Geng
    Xin Zeng
    Bo Xue
    [J]. Mathematical Physics, Analysis and Geometry, 2013, 16 : 229 - 251
  • [6] Algebro-geometric Solutions for the Derivative Burgers Hierarchy
    Yu Hou
    Engui Fan
    Zhijun Qiao
    Zhong Wang
    [J]. Journal of Nonlinear Science, 2015, 25 : 1 - 35
  • [7] Algebro-geometric solutions for the Hunter–Saxton hierarchy
    Yu Hou
    Engui Fan
    Peng Zhao
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 487 - 520
  • [8] Algebro-geometric Solutions for the Derivative Burgers Hierarchy
    Hou, Yu
    Fan, Engui
    Qiao, Zhijun
    Wang, Zhong
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (01) : 1 - 35
  • [9] An alternative approach to algebro-geometric solutions of the AKNS hierarchy
    Gesztesy, F
    Ratnaseelan, R
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) : 345 - 391
  • [10] Algebro-Geometric Solutions of the Sine-Gordon Hierarchy
    Geng, Xue
    Guan, Liang
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (01) : 114 - 134