Algebro-geometric solutions to the Manakov hierarchy

被引:21
|
作者
Wu, Lihua [1 ]
Geng, Xianguo [2 ]
He, Guoliang [3 ]
机构
[1] Huaqiao Univ, Dept Math, Quanzhou 362021, Fujian, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Manakov hierarchy; algebro-geometric solution; trigonal curve; 35Q55; 35Q51; 37K10; 37K20; NONLINEAR SCHRODINGER-EQUATIONS; QUASI-PERIODIC SOLUTIONS; SHAPE-CHANGING COLLISIONS; EXACT SOLITON-SOLUTIONS; BRIGHT; FLOWS; DECOMPOSITION; INTEGRABILITY; CONSERVATION; PERTURBATION;
D O I
10.1080/00036811.2015.1031220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Manakov hierarchy associated with a [GRAPHICS] matrix spectral problem is proposed with the aid of Lenard recursion equations. By using the characteristic polynomial of Lax matrix for the Manakov hierarchy, we introduce a trigonal curve [GRAPHICS] of arithmetic genus [GRAPHICS] , from which we construct the related Baker-Akhiezer function, two algebraic functions carrying the data of the divisor and Dubrovin-type equations. Based on the theory of trigonal curves, the explicit theta function representations of the Baker-Akhiezer function, the two algebraic functions, and in particular, that of solutions for the entire Manakov hierarchy are obtained.
引用
收藏
页码:769 / 800
页数:32
相关论文
共 50 条
  • [21] Algebro-Geometric Solutions and Their Reductions for the Fokas-Lenells Hierarchy
    Zhao, Peng
    Fan, Engui
    Hou, Yu
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (03) : 355 - 393
  • [22] ALGEBRO-GEOMETRIC SOLUTIONS OF THE DISCRETE RAGNISCO-TU HIERARCHY
    Zeng, Xin
    Geng, Xianguo
    REPORTS ON MATHEMATICAL PHYSICS, 2014, 73 (01) : 17 - 48
  • [23] On Algebro-Geometric Simply-Periodic Solutions of the KdV Hierarchy
    Chen, Zhijie
    Lin, Chang-Shou
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (01) : 111 - 144
  • [24] On Algebro-Geometric Simply-Periodic Solutions of the KdV Hierarchy
    Zhijie Chen
    Chang-Shou Lin
    Communications in Mathematical Physics, 2020, 374 : 111 - 144
  • [25] Algebro-geometric solutions of the modified Jaulent-Miodek hierarchy
    Gao, Huan
    Wang, Deng-Shan
    Zhao, Peng
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (02)
  • [26] A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy
    Gesztesy, F
    Weikard, R
    ACTA MATHEMATICA, 1998, 181 (01) : 63 - 108
  • [27] Straightening out of the flows for the Hu hierarchy and its algebro-geometric solutions
    Zhai, Yunyun
    Geng, Xianguo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) : 561 - 576
  • [28] Algebro-geometric solutions for the complex Sharma-Tasso-Olver hierarchy
    Yue, Chao
    Xia, Tiecheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [29] Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy
    Geng, Xianguo
    Zhai, Yunyun
    Dai, H. H.
    ADVANCES IN MATHEMATICS, 2014, 263 : 123 - 153
  • [30] Real-valued algebro-geometric solutions of the Camassa-Holm hierarchy
    Gesztesy, Fritz
    Holden, Helge
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1867): : 1025 - 1054