Algebro-geometric solutions to the Manakov hierarchy

被引:21
|
作者
Wu, Lihua [1 ]
Geng, Xianguo [2 ]
He, Guoliang [3 ]
机构
[1] Huaqiao Univ, Dept Math, Quanzhou 362021, Fujian, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Manakov hierarchy; algebro-geometric solution; trigonal curve; 35Q55; 35Q51; 37K10; 37K20; NONLINEAR SCHRODINGER-EQUATIONS; QUASI-PERIODIC SOLUTIONS; SHAPE-CHANGING COLLISIONS; EXACT SOLITON-SOLUTIONS; BRIGHT; FLOWS; DECOMPOSITION; INTEGRABILITY; CONSERVATION; PERTURBATION;
D O I
10.1080/00036811.2015.1031220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Manakov hierarchy associated with a [GRAPHICS] matrix spectral problem is proposed with the aid of Lenard recursion equations. By using the characteristic polynomial of Lax matrix for the Manakov hierarchy, we introduce a trigonal curve [GRAPHICS] of arithmetic genus [GRAPHICS] , from which we construct the related Baker-Akhiezer function, two algebraic functions carrying the data of the divisor and Dubrovin-type equations. Based on the theory of trigonal curves, the explicit theta function representations of the Baker-Akhiezer function, the two algebraic functions, and in particular, that of solutions for the entire Manakov hierarchy are obtained.
引用
收藏
页码:769 / 800
页数:32
相关论文
共 50 条
  • [41] Algebro-Geometric Solutions of the Generalized Virasoro Constraints
    Plaza Martin, Francisco Jose
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [42] Algebro-geometric solutions for the two-component Camassa-Holm Dym hierarchy
    Hou, Yu
    Fan, Engui
    CHAOS SOLITONS & FRACTALS, 2014, 67 : 43 - 57
  • [43] Algebro-Geometric Integration of the Modified Belov—Chaltikian Lattice Hierarchy
    Xianguo Geng
    Jiao Wei
    Xin Zeng
    Theoretical and Mathematical Physics, 2019, 199 : 675 - 694
  • [44] THE ALGEBRO-GEOMETRIC INITIAL VALUE PROBLEM FOR THE ABLOWITZ LADIK HIERARCHY
    Gesztesy, Fritz
    Holden, Helge
    Michor, Johanna
    Teschl, Gerald
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (01) : 151 - 196
  • [45] Note on algebro-geometric solutions to triangular Schlesinger systems
    Dragovic, Vladimir
    Shramchenko, Vasilisa
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 (04) : 571 - 583
  • [46] ALGEBRO-GEOMETRIC QUASI-PERIODIC SOLUTIONS TO THE THREE-WAVE RESONANT INTERACTION HIERARCHY
    He, Guoliang
    Geng, Xianguo
    Wu, Lihua
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) : 1348 - 1384
  • [47] Algebro-Geometric Solutions of the Baxter–Szegő Difference Equation
    Jeffrey S. Geronimo
    Fritz Gesztesy
    Helge Holden
    Communications in Mathematical Physics, 2005, 258 : 149 - 177
  • [48] On the numerical evaluation of algebro-geometric solutions to integrable equations
    Kalla, C.
    Klein, C.
    NONLINEARITY, 2012, 25 (03) : 569 - 596
  • [49] Note on algebro-geometric solutions to triangular Schlesinger systems
    Vladimir Dragović
    Vasilisa Shramchenko
    Journal of Nonlinear Mathematical Physics, 2017, 24 : 571 - 583
  • [50] ALGEBRO-GEOMETRIC FEYNMAN RULES
    Aluffi, Paolo
    Marcolli, Matilde
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (01) : 203 - 237