Iterative refinement of Schur decompositions

被引:1
|
作者
Bujanovic, Zvonimir [1 ]
Kressner, Daniel [2 ]
Schroeder, Christian [3 ,4 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Zagreb, Croatia
[2] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
[3] TU Berlin, Inst Math, Freelancing Numer Analyst Last Acad Posit, Berlin, Germany
[4] TU Berlin, Inst Math, Berlin, Germany
关键词
Schur decomposition; Iterative refinement; Mixed precision; Eigenvalue computation; RECURSIVE BLOCKED ALGORITHMS; SOLVING TRIANGULAR SYSTEMS; MULTISHIFT QR ALGORITHM; PART II; INVARIANT; SYLVESTER;
D O I
10.1007/s11075-022-01327-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schur decomposition of a square matrix A is an important intermediate step of state-of-the-art numerical algorithms for addressing eigenvalue problems, matrix functions, and matrix equations. This work is concerned with the following task: Compute a (more) accurate Schur decomposition of A from a given approximate Schur decomposition. This task arises, for example, in the context of parameter-dependent eigenvalue problems and mixed precision computations. We have developed a Newton-like algorithm that requires the solution of a triangular matrix equation and an approximate orthogonalization step in every iteration. We prove local quadratic convergence for matrices with mutually distinct eigenvalues and observe fast convergence in practice. In a mixed low-high precision environment, our algorithm essentially reduces to only four high-precision matrix-matrix multiplications per iteration. When refining double to quadruple precision, it often needs only 3-4 iterations, which reduces the time of computing a quadruple precision Schur decomposition by up to a factor of 10-20.
引用
收藏
页码:247 / 267
页数:21
相关论文
共 50 条
  • [41] Iterative refinement for symmetric eigenvalue decomposition
    Takeshi Ogita
    Kensuke Aishima
    Japan Journal of Industrial and Applied Mathematics, 2018, 35 : 1007 - 1035
  • [42] Multistage mixed precision iterative refinement
    Oktay, Eda
    Carson, Erin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (04)
  • [43] Iterative refinement using splitting methods
    Yuan, JY
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 273 : 199 - 214
  • [44] Iterative refinement for linear systems and LAPACK
    Higham, NJ
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (04) : 495 - 509
  • [45] Iterative Refinement Quantum Amplitude Estimation
    Saito, Yoshiyuki
    Lee, Xinwei
    Xie, Ningyi
    Cai, Dongsheng
    Shin, Jungpil
    Asai, Nobuyoshi
    2023 IEEE 16TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP, MCSOC, 2023, : 202 - 209
  • [46] ITERATIVE REFINEMENT OF THE METHOD OF MOMENTS.
    Miel, George
    1600, (09): : 11 - 12
  • [47] Iterative Convex Refinement for Sparse Recovery
    Mousavi, Hojjat S.
    Monga, Vishal
    Tran, Trac D.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 1903 - 1907
  • [48] A note on iterative refinement for seminormal equations
    Rozloznik, Miroslav
    Smoktunowicz, Alicja
    Kopal, Jiri
    APPLIED NUMERICAL MATHEMATICS, 2014, 75 : 167 - 174
  • [49] Iterative refinement for symmetric eigenvalue decomposition
    Ogita, Takeshi
    Aishima, Kensuke
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (03) : 1007 - 1035
  • [50] ON THE OPTIMALITY OF AN ADDITIVE ITERATIVE REFINEMENT METHOD
    DRYJA, M
    WIDLUND, OB
    PROCEEDINGS OF THE FOURTH COPPER MOUNTAIN CONFERENCE ON MULTIGRID METHODS, 1989, : 161 - 170