Iterative refinement of Schur decompositions

被引:1
|
作者
Bujanovic, Zvonimir [1 ]
Kressner, Daniel [2 ]
Schroeder, Christian [3 ,4 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Zagreb, Croatia
[2] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
[3] TU Berlin, Inst Math, Freelancing Numer Analyst Last Acad Posit, Berlin, Germany
[4] TU Berlin, Inst Math, Berlin, Germany
关键词
Schur decomposition; Iterative refinement; Mixed precision; Eigenvalue computation; RECURSIVE BLOCKED ALGORITHMS; SOLVING TRIANGULAR SYSTEMS; MULTISHIFT QR ALGORITHM; PART II; INVARIANT; SYLVESTER;
D O I
10.1007/s11075-022-01327-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schur decomposition of a square matrix A is an important intermediate step of state-of-the-art numerical algorithms for addressing eigenvalue problems, matrix functions, and matrix equations. This work is concerned with the following task: Compute a (more) accurate Schur decomposition of A from a given approximate Schur decomposition. This task arises, for example, in the context of parameter-dependent eigenvalue problems and mixed precision computations. We have developed a Newton-like algorithm that requires the solution of a triangular matrix equation and an approximate orthogonalization step in every iteration. We prove local quadratic convergence for matrices with mutually distinct eigenvalues and observe fast convergence in practice. In a mixed low-high precision environment, our algorithm essentially reduces to only four high-precision matrix-matrix multiplications per iteration. When refining double to quadruple precision, it often needs only 3-4 iterations, which reduces the time of computing a quadruple precision Schur decomposition by up to a factor of 10-20.
引用
收藏
页码:247 / 267
页数:21
相关论文
共 50 条
  • [31] On continuous Peirce decompositions, Schur multipliers and the perturbation of triple functional calculus
    Jonathan Arazy
    Wilhelm Kaup
    Mathematische Annalen, 2001, 320 : 431 - 461
  • [32] Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient
    Zhu, Jian-Zhou
    PHYSICS OF FLUIDS, 2018, 30 (03)
  • [33] Iterative method for computing a Schur form of symplectic matrix
    Mesbahi, A.
    Bentbib, A. H.
    Kanber, A.
    Ellaggoune, F.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2015, 42 (01): : 158 - 166
  • [34] A parallel iterative solver based on the Schur complement system
    Larrazábal, G
    Cela, JM
    INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, PROCEEDINGS, 2001, : 149 - 154
  • [35] Iterative refinement of computing inverse matrix
    Wu, Xinyuan
    Wu, Jun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (07) : 1126 - 1134
  • [36] Information filtering via iterative refinement
    Laureti, P.
    Moret, L.
    Zhang, Y. -C.
    Yu, Y. -K.
    EUROPHYSICS LETTERS, 2006, 75 (06): : 1006 - 1012
  • [37] Iterative Refinement of an AIS Rewards System
    Wang, Karen
    Ma, Zhenjun
    Baker, Ryan S.
    Li, Yuanyuan
    ADAPTIVE INSTRUCTIONAL SYSTEMS, AIS 2022, 2022, 13332 : 113 - 125
  • [38] IS THE ITERATIVE REFINEMENT OF EIGENELEMENTS AN EXPENSIVE TECHNIQUE
    DALMEIDA, FD
    RODRIGUES, MJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 20 : 159 - 166
  • [39] Combining indexing and learning in iterative refinement
    Li, CS
    Castelli, V
    Smith, JR
    Bergman, L
    STORAGE AND RETRIEVAL FOR IMAGE AND VIDEO DATABASES VII, 1998, 3656 : 390 - 400
  • [40] A refinement of an iterative orthogonal projection method
    Jamil, Noreen
    Mirza, Farhaan
    Naeem, M. Asif
    Baghaei, Nilufar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 : 31 - 41