Iterative refinement of Schur decompositions

被引:1
|
作者
Bujanovic, Zvonimir [1 ]
Kressner, Daniel [2 ]
Schroeder, Christian [3 ,4 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Zagreb, Croatia
[2] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
[3] TU Berlin, Inst Math, Freelancing Numer Analyst Last Acad Posit, Berlin, Germany
[4] TU Berlin, Inst Math, Berlin, Germany
关键词
Schur decomposition; Iterative refinement; Mixed precision; Eigenvalue computation; RECURSIVE BLOCKED ALGORITHMS; SOLVING TRIANGULAR SYSTEMS; MULTISHIFT QR ALGORITHM; PART II; INVARIANT; SYLVESTER;
D O I
10.1007/s11075-022-01327-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schur decomposition of a square matrix A is an important intermediate step of state-of-the-art numerical algorithms for addressing eigenvalue problems, matrix functions, and matrix equations. This work is concerned with the following task: Compute a (more) accurate Schur decomposition of A from a given approximate Schur decomposition. This task arises, for example, in the context of parameter-dependent eigenvalue problems and mixed precision computations. We have developed a Newton-like algorithm that requires the solution of a triangular matrix equation and an approximate orthogonalization step in every iteration. We prove local quadratic convergence for matrices with mutually distinct eigenvalues and observe fast convergence in practice. In a mixed low-high precision environment, our algorithm essentially reduces to only four high-precision matrix-matrix multiplications per iteration. When refining double to quadruple precision, it often needs only 3-4 iterations, which reduces the time of computing a quadruple precision Schur decomposition by up to a factor of 10-20.
引用
收藏
页码:247 / 267
页数:21
相关论文
共 50 条
  • [21] Chebyshev acceleration of iterative refinement
    Arioli, M.
    Scott, J.
    NUMERICAL ALGORITHMS, 2014, 66 (03) : 591 - 608
  • [22] A Refinement of the KSOR Iterative Method
    Meligy, Sh A.
    Youssef, I. K.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (03): : 1193 - 1199
  • [23] A modified iterative refinement scheme
    Dax, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (04): : 1199 - 1213
  • [24] ITERATIVE SHAPE REFINEMENT IN AAM
    Su, Ya
    Gao, Xinbo
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2011, 11 (01) : 137 - 151
  • [25] ITERATIVE REFINEMENT OF THE METHOD OF MOMENTS
    MIEL, G
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (11-12) : 1193 - 1200
  • [26] ITERATIVE REFINEMENT IN FLOATING POINT
    MOLER, CB
    JOURNAL OF THE ACM, 1967, 14 (02) : 318 - &
  • [27] Iterative refinement for Neville elimination
    Alonso, P.
    Delgado, J.
    Gallego, R.
    Pena, J. M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (02) : 341 - 353
  • [28] The Role of Precision for Iterative Refinement
    Lee, JunKyu
    Peterson, Gregory D.
    2012 SYMPOSIUM ON APPLICATION ACCELERATORS IN HIGH PERFORMANCE COMPUTING (SAAHPC), 2012, : 125 - 128
  • [29] Iterative Refinement for Linear Programming
    Gleixner, Ambros M.
    Steffy, Daniel E.
    Wolter, Kati
    INFORMS JOURNAL ON COMPUTING, 2016, 28 (03) : 449 - 464
  • [30] On continuous Peirce decompositions, Schur multipliers and the perturbation of triple functional calculus
    Arazy, J
    Kaup, W
    MATHEMATISCHE ANNALEN, 2001, 320 (03) : 431 - 461