Quantum machine learning in the latent space of high energy physics events

被引:0
|
作者
Wozniak, Kinga Anna [1 ,2 ]
Belis, Vasilis [1 ,3 ]
Pierini, Maurizio [1 ]
Vallecorsa, Sofia [1 ]
Dissertori, Gunther [3 ]
Barkoutsos, Panagiotis [4 ]
Tavernelli, Ivano [4 ]
机构
[1] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland
[2] Univ Vienna, A-1090 Vienna, Austria
[3] ETH, Zurich, Switzerland
[4] IBM Res Zurich, IBM Quantum, CH-8803 Ruschlikon, Switzerland
关键词
D O I
10.1088/1742-6596/2438/1/012115
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate supervised and unsupervised quantum machine learning algorithms in the context of typical data analyses at the LHC. To accommodate the constraints on the problem size, dictated by limitations on the quantum hardware, we concatenate the quantum algorithms to the encoder of a classical convolutional autoencoder, used for dimensionality reduction. We present results for a quantum classifier and a quantum anomaly detection algorithm, comparing performance to corresponding classical algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Evolutionary algorithms for hyperparameter optimization in machine learning for application in high energy physics
    Laurits Tani
    Diana Rand
    Christian Veelken
    Mario Kadastik
    The European Physical Journal C, 2021, 81
  • [32] Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics
    M. Migliorini
    R. Castellotti
    L. Canali
    M. Zanetti
    Computing and Software for Big Science, 2020, 4 (1)
  • [33] SYMBA: symbolic computation of squared amplitudes in high energy physics with machine learning
    Alnuqaydan, Abdulhakim
    Gleyzer, Sergei
    Prosper, Harrison
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01):
  • [34] A Survey of Interpretability of Machine Learning in Accelerator-based High Energy Physics
    Turvill, Danielle
    Barnby, Lee
    Yuan, Bo
    Zahir, Ali
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT 2020), 2020, : 77 - 86
  • [35] Mapping the physics research space: a machine learning approach
    Matteo Chinazzi
    Bruno Gonçalves
    Qian Zhang
    Alessandro Vespignani
    EPJ Data Science, 8
  • [36] Mapping the physics research space: a machine learning approach
    Chinazzi, Matteo
    Goncalves, Bruno
    Zhang, Qian
    Vespignani, Alessandro
    EPJ DATA SCIENCE, 2019, 8 (01)
  • [37] Quantum machine learning: from physics to software engineering
    Melnikov, Alexey
    Kordzanganeh, Mohammad
    Alodjants, Alexander
    Lee, Ray-Kuang
    ADVANCES IN PHYSICS-X, 2023, 8 (01):
  • [38] Machine learning toolbox for quantum many body physics
    Vicentini, Filippo
    NATURE REVIEWS PHYSICS, 2021, 3 (03) : 156 - 156
  • [39] Machine learning toolbox for quantum many body physics
    Filippo Vicentini
    Nature Reviews Physics, 2021, 3 : 156 - 156
  • [40] Quantum machine learning for particle physics using a variational quantum classifier
    Blance, Andrew
    Spannowsky, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)