Quantum machine learning in the latent space of high energy physics events

被引:0
|
作者
Wozniak, Kinga Anna [1 ,2 ]
Belis, Vasilis [1 ,3 ]
Pierini, Maurizio [1 ]
Vallecorsa, Sofia [1 ]
Dissertori, Gunther [3 ]
Barkoutsos, Panagiotis [4 ]
Tavernelli, Ivano [4 ]
机构
[1] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland
[2] Univ Vienna, A-1090 Vienna, Austria
[3] ETH, Zurich, Switzerland
[4] IBM Res Zurich, IBM Quantum, CH-8803 Ruschlikon, Switzerland
关键词
D O I
10.1088/1742-6596/2438/1/012115
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate supervised and unsupervised quantum machine learning algorithms in the context of typical data analyses at the LHC. To accommodate the constraints on the problem size, dictated by limitations on the quantum hardware, we concatenate the quantum algorithms to the encoder of a classical convolutional autoencoder, used for dimensionality reduction. We present results for a quantum classifier and a quantum anomaly detection algorithm, comparing performance to corresponding classical algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum machine learning for particle physics using a variational quantum classifier
    Andrew Blance
    Michael Spannowsky
    Journal of High Energy Physics, 2021
  • [42] Quantum anomaly detection in the latent space of proton collision events at the LHC
    Belis, Vasilis
    Wozniak, Kinga Anna
    Puljak, Ema
    Barkoutsos, Panagiotis
    Dissertori, Gunther
    Grossi, Michele
    Pierini, Maurizio
    Reiter, Florentin
    Tavernelli, Ivano
    Vallecorsa, Sofia
    COMMUNICATIONS PHYSICS, 2024, 7 (01):
  • [43] Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow
    Wiewel, S.
    Becher, M.
    Thuerey, N.
    COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 71 - 82
  • [44] Quantum Machine Learning in Chemical Compound Space
    von Lilienfeld, O. Anatole
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (16) : 4164 - 4169
  • [45] MACHINE LEARNING, QUANTUM CHEMISTRY, AND CHEMICAL SPACE
    Ramakrishnan, Raghunathan
    von Lilienfeld, O. Anatole
    REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 30, 2017, 30 : 225 - 256
  • [46] Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the LHC on IBM quantum computer simulator and hardware with 10 qubits
    Wu, Sau Lan
    Chan, Jay
    Guan, Wen
    Sun, Shaojun
    Wang, Alex
    Zhou, Chen
    Livny, Miron
    Carminati, Federico
    Di Meglio, Alberto
    Li, Andy C. Y.
    Lykken, Joseph
    Spentzouris, Panagiotis
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    Wei, Tzu-Chieh
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (12)
  • [47] Machine learning at the energy and intensity frontiers of particle physics
    Alexander Radovic
    Mike Williams
    David Rousseau
    Michael Kagan
    Daniele Bonacorsi
    Alexander Himmel
    Adam Aurisano
    Kazuhiro Terao
    Taritree Wongjirad
    Nature, 2018, 560 : 41 - 48
  • [48] Machine learning at the energy and intensity frontiers of particle physics
    Radovic, Alexander
    Williams, Mike
    Rousseau, David
    Kagan, Michael
    Bonacorsi, Daniele
    Himmel, Alexander
    Aurisano, Adam
    Terao, Kazuhiro
    Wongjirad, Taritree
    NATURE, 2018, 560 (7716) : 41 - 48
  • [49] High-energy physics experiments in space
    Cervelli, F
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 535 (1-2): : 25 - 35
  • [50] Incorporating Physical Knowledge Into Machine Learning for Planetary Space Physics
    Azari, Abigail R.
    Lockhart, Jeffrey W.
    Liemohn, Michael W.
    Jia, Xianzhe
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2020, 7