Quantum machine learning in the latent space of high energy physics events

被引:0
|
作者
Wozniak, Kinga Anna [1 ,2 ]
Belis, Vasilis [1 ,3 ]
Pierini, Maurizio [1 ]
Vallecorsa, Sofia [1 ]
Dissertori, Gunther [3 ]
Barkoutsos, Panagiotis [4 ]
Tavernelli, Ivano [4 ]
机构
[1] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland
[2] Univ Vienna, A-1090 Vienna, Austria
[3] ETH, Zurich, Switzerland
[4] IBM Res Zurich, IBM Quantum, CH-8803 Ruschlikon, Switzerland
关键词
D O I
10.1088/1742-6596/2438/1/012115
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate supervised and unsupervised quantum machine learning algorithms in the context of typical data analyses at the LHC. To accommodate the constraints on the problem size, dictated by limitations on the quantum hardware, we concatenate the quantum algorithms to the encoder of a classical convolutional autoencoder, used for dimensionality reduction. We present results for a quantum classifier and a quantum anomaly detection algorithm, comparing performance to corresponding classical algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Uncertainty-aware machine learning for high energy physics
    Ghosh, Aishik
    Nachman, Benjamin
    Whiteson, Daniel
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [22] Machine Learning in High Energy Physics Community White Paper
    Albertsson, Kim
    Altoe, Piero
    Anderson, Dustin
    Andrews, Michael
    Espinosa, Juan Pedro Araque
    Aurisano, Adam
    Basara, Laurent
    Bevan, Adrian
    Bhimji, Wahid
    Bonacorsi, Daniele
    Calafiura, Paolo
    Campanelli, Mario
    Capps, Louis
    Carminati, Federico
    Carrazza, Stefano
    Childers, Taylor
    Coniavitis, Elias
    Cranmer, Kyle
    David, Claire
    Davis, Douglas
    Duarte, Javier
    Erdmann, Martin
    Eschle, Jonas
    Farbin, Amir
    Feickert, Matthew
    Castro, Nuno Filipe
    Fitzpatrick, Conor
    Floris, Michele
    Forti, Alessandra
    Garra-Tico, Jordi
    Gemmler, Jochen
    Girone, Maria
    Glaysher, Paul
    Gleyzer, Sergei
    Gligorov, Vladimir
    Golling, Tobias
    Graw, Jonas
    Gray, Lindsey
    Greenwood, Dick
    Hacker, Thomas
    Harvey, John
    Hegner, Benedikt
    Heinrich, Lukas
    Hooberman, Ben
    Junggeburth, Johannes
    Kagan, Michael
    Kane, Meghan
    Kanishchev, Konstantin
    Karpinski, Przemyslaw
    Kassabov, Zahari
    18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
  • [23] Bias and priors in machine learning calibrations for high energy physics
    Gambhir, Rikab
    Nachman, Benjamin
    Thaler, Jesse
    PHYSICAL REVIEW D, 2022, 106 (03)
  • [24] NNDrone: A toolkit for the mass application of machine learning in High Energy Physics
    Benson, Sean
    Gizdov, Konstantin
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 240 : 15 - 20
  • [25] Cloud native approach for Machine Learning as a Service for High Energy Physics
    Giommi, L.
    Spiga, D.
    Kuznetsov, V
    Bonacorsi, D.
    Paladino, M.
    INTERNATIONAL SYMPOSIUM ON GRIDS & CLOUDS 2022, 2022,
  • [26] Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
    Chan, J.
    Guan, W.
    Sun, S. J.
    Wang, A.
    Wu, S. L.
    Zhou, C.
    Livny, M.
    Carminati, F.
    Meglio, A. D.
    EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS, EPS-HEP2019, 2020,
  • [27] Exploring the Latent Chemical Space of Oxygen Vacancy Formation Energy by a Machine Learning Ensemble
    Park, Seulyoung
    Lee, Noki
    Park, Jun Oh
    Park, Jin
    Heo, Yu Seong
    Lee, Jaichan
    ACS MATERIALS LETTERS, 2023, 6 (01): : 66 - 72
  • [28] Nuclear Physics in the Era of Quantum Computing and Quantum Machine Learning
    Garcia-Ramos, Jose-Enrique
    Saiz, Alvaro
    Arias, Jose M.
    Lamata, Lucas
    Perez-Fernandez, Pedro
    ADVANCED QUANTUM TECHNOLOGIES, 2024,
  • [29] Explainable machine learning of the underlying physics of high-energy particle collisions
    Lai, Yue Shi
    Neill, Duff
    Ploskon, Mateusz
    Ringer, Felix
    PHYSICS LETTERS B, 2022, 829
  • [30] Evolutionary algorithms for hyperparameter optimization in machine learning for application in high energy physics
    Tani, Laurits
    Rand, Diana
    Veelken, Christian
    Kadastik, Mario
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (02):