Nuclear Physics in the Era of Quantum Computing and Quantum Machine Learning

被引:0
|
作者
Garcia-Ramos, Jose-Enrique [1 ,2 ,3 ]
Saiz, Alvaro [4 ]
Arias, Jose M. [5 ]
Lamata, Lucas [5 ]
Perez-Fernandez, Pedro [4 ]
机构
[1] Univ Huelva, Dept Ciencias Integradas, Huelva 21071, Spain
[2] Univ Huelva, Ctr Estudios Avanzadosen Fis Matemat & Comp, Huelva 21071, Spain
[3] Univ Granada, Inst Carlosde Fis Teor & Computac 1, Fuentenueva S-N, Granada 18071, Spain
[4] Univ Seville, Escuela Tecn Super Ingn, Dept Fis Aplicada 3, E-41092 Seville, Spain
[5] Univ Seville, Fac Fis, Dept Fis Atom Mol & Nucl, Apartado 1065, E-41080 Seville, Spain
关键词
nuclear models; quantum machine learning; quantum phase transitions; PLUS-QUADRUPOLE MODEL; VALIDITY; APPROXIMATION; DEFORMATIONS;
D O I
10.1002/qute.202300219
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the application of quantum simulations and quantum machine learning is explored to solve problems in low-energy nuclear physics. The use of quantum computing to address nuclear physics problems is still in its infancy, and particularly, the application of quantum machine learning (QML) in the realm of low-energy nuclear physics is almost nonexistent. Three specific examples are presented where the utilization of quantum computing and QML provides, or can potentially provide in the future, a computational advantage: i) determining the phase/shape in schematic nuclear models, ii) calculating the ground state energy of a nuclear shell model-type Hamiltonian, and iii) identifying particles or determining trajectories in nuclear physics experiments. The use of QML in the realm of nuclear physics at low energy is almost nonexistent. Three examples of the use of quantum computing and quantum machine in nuclear physics are presented: the determination of the phase/shape in nuclear models, the calculation of the ground state energy, and the identification of particles in nuclear physics experiments. image
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Quantum computing for nuclear physics
    Savage, Martin J.
    [J]. 30TH INTERNATIONAL CONFERENCE ON ULTRA-RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, QUARK MATTER 2023, 2024, 296
  • [2] Comments on Quantum Computing in Nuclear Physics
    Stevenson, Paul D.
    [J]. INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2023, 18 (01) : 83 - 92
  • [3] Machine learning for quantum physics
    Hush, Michael R.
    [J]. SCIENCE, 2017, 355 (6325) : 580 - 580
  • [4] Selected topics of quantum computing for nuclear physics
    张旦波
    邢宏喜
    颜辉
    王恩科
    朱诗亮
    [J]. Chinese Physics B, 2021, 30 (02) : 36 - 47
  • [5] Selected topics of quantum computing for nuclear physics*
    Zhang, Dan-Bo
    Xing, Hongxi
    Yan, Hui
    Wang, Enke
    Zhu, Shi-Liang
    [J]. CHINESE PHYSICS B, 2021, 30 (02)
  • [6] Quantum machine learning for chemistry and physics
    Sajjan, Manas
    Li, Junxu
    Selvarajan, Raja
    Sureshbabu, Shree Hari
    Kale, Sumit Suresh
    Gupta, Rishabh
    Singh, Vinit
    Kais, Sabre
    [J]. CHEMICAL SOCIETY REVIEWS, 2022, 51 (15) : 6475 - 6573
  • [7] MACHINE LEARNING meets QUANTUM PHYSICS
    Das Sarma, Sankar
    Deng, Dong-Ling
    Duan, Lu-Ming
    [J]. PHYSICS TODAY, 2019, 72 (03) : 48 - 54
  • [8] Quantum machine learning in high energy physics
    Guan, Wen
    Perdue, Gabriel
    Pesah, Arthur
    Schuld, Maria
    Terashi, Koji
    Vallecorsa, Sofia
    Vlimant, Jean-Roch
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [9] PHYSICS Quantum computing
    Knill, Emanuel
    [J]. NATURE, 2010, 463 (7280) : 441 - 443
  • [10] Quantum machine learning for particle physics using a variational quantum classifier
    Blance, Andrew
    Spannowsky, Michael
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)