Machine learning toolbox for quantum many body physics

被引:6
|
作者
Vicentini, Filippo [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Phys, Lausanne, Switzerland
关键词
D O I
10.1038/s42254-021-00285-7
中图分类号
O59 [应用物理学];
学科分类号
摘要
Filippo Vicentini introduces the open-source Python toolkit NetKet, which implements machine learning methods for the study of quantum many body physics.
引用
收藏
页码:156 / 156
页数:1
相关论文
共 50 条
  • [1] Machine learning toolbox for quantum many body physics
    Filippo Vicentini
    Nature Reviews Physics, 2021, 3 : 156 - 156
  • [2] Editorial: Tensor network approaches for quantum many-body physics and machine learning
    Ran, Shi-Ju
    Zhao, Qibin
    Zhang, Peng
    Guo, Chu
    FRONTIERS IN PHYSICS, 2023, 11
  • [3] Uncovering quantum many-body scars with quantum machine learning
    Feng, Jia-Jin
    Zhang, Bingzhi
    Yang, Zhi-Cheng
    Zhuang, Quntao
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [4] Machine learning-based compression of quantum many body physics: PCA and autoencoder representation of the vertex function
    Zang, Jiawei
    Medvidovic, Matija
    Kiese, Dominik
    Di Sante, Domenico
    Sengupta, Anirvan M.
    Millis, Andrew J.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [5] Machine learning for many-body physics: The case of the Anderson impurity model
    Arsenault, Louis-Francois
    Lopez-Bezanilla, Alejandro
    von Lilienfeld, O. Anatole
    Millis, Andrew J.
    PHYSICAL REVIEW B, 2014, 90 (15)
  • [6] Certificates of quantum many-body properties assisted by machine learning
    Requena, Borja
    Munoz-Gil, Gorka
    Lewenstein, Maciej
    Dunjko, Vedran
    Tura, Jordi
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [7] Provably efficient machine learning for quantum many-body problems
    Huang, Hsin-Yuan
    Kueng, Richard
    Torlai, Giacomo
    Albert, Victor V.
    Preskill, John
    SCIENCE, 2022, 377 (6613) : 1397 - +
  • [8] NetKet: A machine learning toolkit for many-body quantum systems
    Carleo, Giuseppe
    Choo, Kenny
    Hofmann, Damian
    Smith, James E. T.
    Westerhout, Tom
    Alet, Fabien
    Davis, Emily J.
    Efthymiou, Stavros
    Glasser, Ivan
    Lin, Sheng-Hsuan
    Mauri, Marta
    Mazzola, Guglielmo
    Mendl, Christian B.
    van Nieuwenburg, Evert
    O'Reilly, Ossian
    Theveniaut, Hugo
    Torlai, Giacomo
    Vicentini, Filippo
    Wietek, Alexander
    SOFTWAREX, 2019, 10
  • [9] Machine learning for quantum physics
    Hush, Michael R.
    SCIENCE, 2017, 355 (6325) : 580 - 580
  • [10] Many-body physics and quantum chaos
    Ullmo, Denis
    REPORTS ON PROGRESS IN PHYSICS, 2008, 71 (02)