Machine learning toolbox for quantum many body physics

被引:6
|
作者
Vicentini, Filippo [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Phys, Lausanne, Switzerland
关键词
D O I
10.1038/s42254-021-00285-7
中图分类号
O59 [应用物理学];
学科分类号
摘要
Filippo Vicentini introduces the open-source Python toolkit NetKet, which implements machine learning methods for the study of quantum many body physics.
引用
收藏
页码:156 / 156
页数:1
相关论文
共 50 条
  • [31] Quantum Many-body Physics with Multimode Cavity QED
    Lev, B.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [32] Image Denoising Inspired by Quantum Many-Body physics
    Dutta, Sayantan
    Basarab, Adrian
    Georgeot, Bertrand
    Kouame, Denis
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1619 - 1623
  • [33] Quantum many-body physics from a gravitational lens
    Liu, Hong
    Sonner, Julian
    NATURE REVIEWS PHYSICS, 2020, 2 (11) : 615 - 633
  • [34] Quantum many-body physics from a gravitational lens
    Hong Liu
    Julian Sonner
    Nature Reviews Physics, 2020, 2 : 615 - 633
  • [35] Many-body physics and the capacity of quantum channels with memory
    Plenio, M. B.
    Virmani, S.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [36] Quantum machine learning in high energy physics
    Guan, Wen
    Perdue, Gabriel
    Pesah, Arthur
    Schuld, Maria
    Terashi, Koji
    Vallecorsa, Sofia
    Vlimant, Jean-Roch
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [37] Nuclear Physics in the Era of Quantum Computing and Quantum Machine Learning
    Garcia-Ramos, Jose-Enrique
    Saiz, Alvaro
    Arias, Jose M.
    Lamata, Lucas
    Perez-Fernandez, Pedro
    ADVANCED QUANTUM TECHNOLOGIES, 2024,
  • [38] Deep learning-enhanced variational Monte Carlo method for quantum many-body physics
    Yang, Li
    Leng, Zhaoqi
    Yu, Guangyuan
    Patel, Ankit
    Hu, Wen-Jun
    Pu, Han
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [39] Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice
    Saito, Hiroki
    Kato, Masaya
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (01)
  • [40] Exponentially improved efficient machine learning for quantum many-body states with provable guarantees
    Che, Yanming
    Gneiting, Clemens
    Nori, Franco
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):