Quantum machine learning in the latent space of high energy physics events

被引:0
|
作者
Wozniak, Kinga Anna [1 ,2 ]
Belis, Vasilis [1 ,3 ]
Pierini, Maurizio [1 ]
Vallecorsa, Sofia [1 ]
Dissertori, Gunther [3 ]
Barkoutsos, Panagiotis [4 ]
Tavernelli, Ivano [4 ]
机构
[1] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland
[2] Univ Vienna, A-1090 Vienna, Austria
[3] ETH, Zurich, Switzerland
[4] IBM Res Zurich, IBM Quantum, CH-8803 Ruschlikon, Switzerland
关键词
D O I
10.1088/1742-6596/2438/1/012115
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate supervised and unsupervised quantum machine learning algorithms in the context of typical data analyses at the LHC. To accommodate the constraints on the problem size, dictated by limitations on the quantum hardware, we concatenate the quantum algorithms to the encoder of a classical convolutional autoencoder, used for dimensionality reduction. We present results for a quantum classifier and a quantum anomaly detection algorithm, comparing performance to corresponding classical algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum machine learning in high energy physics
    Guan, Wen
    Perdue, Gabriel
    Pesah, Arthur
    Schuld, Maria
    Terashi, Koji
    Vallecorsa, Sofia
    Vlimant, Jean-Roch
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [2] Quantum machine learning and its supremacy in high energy physics
    Sharma, Kapil K.
    MODERN PHYSICS LETTERS A, 2021, 36 (02)
  • [3] Challenges and opportunities in quantum machine learning for high-energy physics
    Sau Lan Wu
    Shinjae Yoo
    Nature Reviews Physics, 2022, 4 : 143 - 144
  • [4] Event Classification with Quantum Machine Learning in High-Energy Physics
    Koji Terashi
    Michiru Kaneda
    Tomoe Kishimoto
    Masahiko Saito
    Ryu Sawada
    Junichi Tanaka
    Computing and Software for Big Science, 2021, 5 (1)
  • [5] Challenges and opportunities in quantum machine learning for high-energy physics
    Wu, Sau Lan
    Yoo, Shinjae
    NATURE REVIEWS PHYSICS, 2022, 4 (03) : 143 - 144
  • [6] Quantum-inspired machine learning on high-energy physics data
    Timo Felser
    Marco Trenti
    Lorenzo Sestini
    Alessio Gianelle
    Davide Zuliani
    Donatella Lucchesi
    Simone Montangero
    npj Quantum Information, 7
  • [7] Quantum-inspired machine learning on high-energy physics data
    Felser, Timo
    Trenti, Marco
    Sestini, Lorenzo
    Gianelle, Alessio
    Zuliani, Davide
    Lucchesi, Donatella
    Montangero, Simone
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [8] Quantum Machine Learning Applications in High-Energy Physics (Invited Paper)
    Delgado, Andrea
    Hamilton, Kathleen E.
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2022,
  • [9] Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC
    Wu, Sau Lan
    Sun, Shaojun
    Guan, Wen
    Zhou, Chen
    Chan, Jay
    Cheng, Chi Lung
    Pham, Tuan
    Qian, Yan
    Wang, Alex Zeng
    Zhang, Rui
    Livny, Miron
    Glick, Jennifer
    Barkoutsos, Panagiotis Kl
    Woerner, Stefan
    Tavernelli, Ivano
    Carminati, Federico
    Di Meglio, Alberto
    Li, Andy C. Y.
    Lykken, Joseph
    Spentzouris, Panagiotis
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    Wei, Tzu-Chieh
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [10] Machine learning for quantum physics
    Hush, Michael R.
    SCIENCE, 2017, 355 (6325) : 580 - 580