Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC

被引:51
|
作者
Wu, Sau Lan [1 ]
Sun, Shaojun [1 ]
Guan, Wen [1 ]
Zhou, Chen [1 ]
Chan, Jay [1 ]
Cheng, Chi Lung [1 ]
Pham, Tuan [1 ]
Qian, Yan [1 ]
Wang, Alex Zeng [1 ]
Zhang, Rui [1 ]
Livny, Miron [2 ]
Glick, Jennifer [3 ]
Barkoutsos, Panagiotis Kl [4 ]
Woerner, Stefan [4 ]
Tavernelli, Ivano [4 ]
Carminati, Federico [5 ]
Di Meglio, Alberto [5 ]
Li, Andy C. Y. [6 ]
Lykken, Joseph [6 ]
Spentzouris, Panagiotis [6 ]
Chen, Samuel Yen-Chi [7 ]
Yoo, Shinjae [7 ]
Wei, Tzu-Chieh [8 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[3] IBM Quantum, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] IBM Quantum, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
[5] CERN, CERN Quantum Technol Initiat, IT Dept, CH-1211 Geneva, Switzerland
[6] Fermilab Natl Accelerator Lab, Quantum Inst, POB 500, Batavia, IL 60510 USA
[7] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[8] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
美国能源部;
关键词
BOSON;
D O I
10.1103/PhysRevResearch.3.033221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum machine learning could possibly become a valuable alternative to classical machine learning for applications in high energy physics by offering computational speedups. In this study, we employ a support vector machine with a quantum kernel estimator (QSVM-Kernel method) to a recent LHC flagship physics analysis: t (t) over barH (Higgs boson production in association with a top quark pair). In our quantum simulation study using up to 20 qubits and up to 50 000 events, the QSVM-Kernel method performs as well as its classical counterparts in three different platforms from Google Tensorflow Quantum, IBM Quantum, and Amazon Braket. Additionally, using 15 qubits and 100 events, the application of the QSVM-Kernel method on the IBM superconducting quantum hardware approaches the performance of a noiseless quantum simulator. Our study confirms that the QSVM-Kernel method can use the large dimensionality of the quantum Hilbert space to replace the classical feature space in realistic physics data sets.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
    Chan, J.
    Guan, W.
    Sun, S. J.
    Wang, A.
    Wu, S. L.
    Zhou, C.
    Livny, M.
    Carminati, F.
    Meglio, A. D.
    EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS, EPS-HEP2019, 2020,
  • [2] Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the LHC on IBM quantum computer simulator and hardware with 10 qubits
    Wu, Sau Lan
    Chan, Jay
    Guan, Wen
    Sun, Shaojun
    Wang, Alex
    Zhou, Chen
    Livny, Miron
    Carminati, Federico
    Di Meglio, Alberto
    Li, Andy C. Y.
    Lykken, Joseph
    Spentzouris, Panagiotis
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    Wei, Tzu-Chieh
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (12)
  • [3] Quantum machine learning in high energy physics
    Guan, Wen
    Perdue, Gabriel
    Pesah, Arthur
    Schuld, Maria
    Terashi, Koji
    Vallecorsa, Sofia
    Vlimant, Jean-Roch
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [4] Quantum machine learning and its supremacy in high energy physics
    Sharma, Kapil K.
    MODERN PHYSICS LETTERS A, 2021, 36 (02)
  • [5] Challenges and opportunities in quantum machine learning for high-energy physics
    Sau Lan Wu
    Shinjae Yoo
    Nature Reviews Physics, 2022, 4 : 143 - 144
  • [6] Event Classification with Quantum Machine Learning in High-Energy Physics
    Koji Terashi
    Michiru Kaneda
    Tomoe Kishimoto
    Masahiko Saito
    Ryu Sawada
    Junichi Tanaka
    Computing and Software for Big Science, 2021, 5 (1)
  • [7] Quantum machine learning in the latent space of high energy physics events
    Wozniak, Kinga Anna
    Belis, Vasilis
    Pierini, Maurizio
    Vallecorsa, Sofia
    Dissertori, Gunther
    Barkoutsos, Panagiotis
    Tavernelli, Ivano
    20TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2023, 2438
  • [8] Challenges and opportunities in quantum machine learning for high-energy physics
    Wu, Sau Lan
    Yoo, Shinjae
    NATURE REVIEWS PHYSICS, 2022, 4 (03) : 143 - 144
  • [9] Quantum Algorithm for High Energy Physics Simulations
    Nachman, Benjamin
    Provasoli, Davide
    de Jong, Wibe A.
    Bauer, Christian W.
    PHYSICAL REVIEW LETTERS, 2021, 126 (06)
  • [10] Quantum machine learning for particle physics using a variational quantum classifier
    Blance, Andrew
    Spannowsky, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)