Grading of lung adenocarcinomas with simultaneous segmentation by artificial intelligence (GLASS-AI)

被引:2
|
作者
Lockhart, John H. [1 ,2 ]
Ackerman, Hayley D. [1 ,2 ]
Lee, Kyubum [3 ]
Abdalah, Mahmoud [4 ]
Davis, Andrew John [1 ,2 ]
Hackel, Nicole [1 ,2 ]
Boyle, Theresa A. [5 ]
Saller, James [5 ]
Keske, Aysenur [6 ]
Hanggi, Kay [6 ]
Ruffell, Brian [6 ]
Stringfield, Olya [4 ]
Cress, W. Douglas [1 ]
Tan, Aik Choon [3 ]
Flores, Elsa R. [1 ,2 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Mol Oncol, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Canc Biol & Evolut Program, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Biostat & Bioinformat, Tampa, FL 33612 USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Quantitat Imaging Core, Tampa, FL 33612 USA
[5] H Lee Moffitt Canc Ctr & Res Inst, Anat Pathol, Tampa, FL 33612 USA
[6] H Lee Moffitt Canc Ctr & Res Inst, Immunol, Tampa, FL 33612 USA
关键词
INTRATUMOR HETEROGENEITY; CANCER; INITIATION;
D O I
10.1038/s41698-023-00419-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Preclinical genetically engineered mouse models (GEMMs) of lung adenocarcinoma are invaluable for investigating molecular drivers of tumor formation, progression, and therapeutic resistance. However, histological analysis of these GEMMs requires significant time and training to ensure accuracy and consistency. To achieve a more objective and standardized analysis, we used machine learning to create GLASS-AI, a histological image analysis tool that the broader cancer research community can utilize to grade, segment, and analyze tumors in preclinical models of lung adenocarcinoma. GLASS-AI demonstrates strong agreement with expert human raters while uncovering a significant degree of unreported intratumor heterogeneity. Integrating immunohistochemical staining with high-resolution grade analysis by GLASS-AI identified dysregulation of Mapk/Erk signaling in high-grade lung adenocarcinomas and locally advanced tumor regions. Our work demonstrates the benefit of employing GLASS-AI in preclinical lung adenocarcinoma models and the power of integrating machine learning and molecular biology techniques for studying the molecular pathways that underlie cancer progression.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Rapid artificial intelligence solutions in a pandemic-The COVID-19-20 Lung CT Lesion Segmentation Challenge
    Roth, Holger R.
    Xu, Ziyue
    Tor-Diez, Carlos
    Jacob, Ramon Sanchez
    Zember, Jonathan
    Molto, Jose
    Li, Wenqi
    Xu, Sheng
    Turkbey, Baris
    Turkbey, Evrim
    Yang, Dong
    Harouni, Ahmed
    Rieke, Nicola
    Hu, Shishuai
    Isensee, Fabian
    Tang, Claire
    Yu, Qinji
    Soelter, Jan
    Zheng, Tong
    Liauchuk, Vitali
    Zhou, Ziqi
    Moltz, Jan Hendrik
    Oliveira, Bruno
    Xia, Yong
    Maier-Hein, Klaus H.
    Li, Qikai
    Husch, Andreas
    Zhang, Luyang
    Kovalev, Vassili
    Kang, Li
    Hering, Alessa
    Vilaca, Joao L.
    Flores, Mona
    Xu, Daguang
    Wood, Bradford
    Linguraru, Marius George
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [32] Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation
    Suri, Jasjit S.
    Agarwal, Sushant
    Saba, Luca
    Chabert, Gian Luca
    Carriero, Alessandro
    Pasche, Alessio
    Danna, Pietro
    Mehmedovic, Armin
    Faa, Gavino
    Jujaray, Tanay
    Singh, Inder M.
    Khanna, Narendra N.
    Laird, John R.
    Sfikakis, Petros P.
    Agarwal, Vikas
    Teji, Jagjit S.
    Yadav, Rajanikant R.
    Nagy, Ferenc
    Kincses, Zsigmond Tamas
    Ruzsa, Zoltan
    Viskovic, Klaudija
    Kalra, Mannudeep K.
    JOURNAL OF MEDICAL SYSTEMS, 2022, 46 (10)
  • [33] Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation
    Jasjit S. Suri
    Sushant Agarwal
    Luca Saba
    Gian Luca Chabert
    Alessandro Carriero
    Alessio Paschè
    Pietro Danna
    Armin Mehmedović
    Gavino Faa
    Tanay Jujaray
    Inder M. Singh
    Narendra N. Khanna
    John R. Laird
    Petros P. Sfikakis
    Vikas Agarwal
    Jagjit S. Teji
    Rajanikant R Yadav
    Ferenc Nagy
    Zsigmond Tamás Kincses
    Zoltan Ruzsa
    Klaudija Viskovic
    Mannudeep K. Kalra
    Journal of Medical Systems, 46
  • [34] A Deep Learning Artificial Intelligence (AI) Method to Improve Spine Segmentation in AP spine DXA Scans and subsequently its BMD and TBS Accuracy
    De Guio, Francois
    Ahmed, El Hassen
    Michelet, Franck
    Shevroja, Enisa
    Lamy, Olivier
    Hans, Didier
    JOURNAL OF BONE AND MINERAL RESEARCH, 2019, 34 : 180 - 180
  • [35] CAN DATA AUGMENTATION IMPROVE THE RESULT OF ARTIFICIAL INTELLIGENCE (AI) LEARNING FOR SEGMENTATION ESOPHAGOGASTRIC JUNCTION IN PATHOLOGICAL-PROVED BARRETT'S ESOPHAGUS?
    Chang, Ching Hsiung
    Kuo, Chao-Hung
    Wu, Jeng-Yih
    GASTROENTEROLOGY, 2023, 164 (06) : S1179 - S1179
  • [36] Artificial-intelligence-based computed tomography histogram analysis predicting tumor invasiveness of lung adenocarcinomas manifesting as radiological part-solid nodules
    Gao, Jian
    Qi, Qingyi
    Li, Hao
    Wang, Zhenfan
    Sun, Zewen
    Cheng, Sida
    Yu, Jie
    Zeng, Yaqi
    Hong, Nan
    Wang, Dawei
    Wang, Huiyang
    Yang, Feng
    Li, Xiao
    Li, Yun
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [37] Multi-Radiologist User Study for Artificial Intelligence-Guided Grading of COVID-19 Lung Disease Severity on Chest Radiographs
    Li, Matthew D.
    Little, Brent P.
    Alkasab, Tarik K.
    Mendoza, Dexter P.
    Succi, Marc D.
    Shepard, Jo-Anne O.
    Lev, Michael H.
    Kalpathy-Cramer, Jayashree
    ACADEMIC RADIOLOGY, 2021, 28 (04) : 572 - 576
  • [38] Application of Artificial Intelligence for Efficient Tumor Volume Segmentation of Lung Cancers in the 18FDG PET-CT Modality
    Salhi, Lotfi
    Mohsni, Chaima
    Slim, Ihsen
    DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2024, VOL 2, 2024, 1099 : 561 - 570
  • [39] An Artificial Intelligence (AI)-Integrated Approach to Enhance Early Detection and Personalized Treatment Strategies in Lung Cancer Among Smokers: A Literature Review
    Chapla, Deep
    Chorya, Harshal P.
    Ishfaq, Lyluma
    Khan, Afrasayab
    Subrahmanyan, V. R.
    Garg, Sheenam
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (08)
  • [40] COVLIAS 1.0: Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models
    Suri, Jasjit S.
    Agarwal, Sushant
    Pathak, Rajesh
    Ketireddy, Vedmanvitha
    Columbu, Marta
    Saba, Luca
    Gupta, Suneet K.
    Faa, Gavino
    Singh, Inder M.
    Turk, Monika
    Chadha, Paramjit S.
    Johri, Amer M.
    Khanna, Narendra N.
    Viskovic, Klaudija
    Mavrogeni, Sophie
    Laird, John R.
    Pareek, Gyan
    Miner, Martin
    Sobel, David W.
    Balestrieri, Antonella
    Sfikakis, Petros P.
    Tsoulfas, George
    Protogerou, Athanasios
    Misra, Durga Prasanna
    Agarwal, Vikas
    Kitas, George D.
    Teji, Jagjit S.
    Al-Maini, Mustafa
    Dhanjil, Surinder K.
    Nicolaides, Andrew
    Sharma, Aditya
    Rathore, Vijay
    Fatemi, Mostafa
    Alizad, Azra
    Krishnan, Pudukode R.
    Frence, Nagy
    Ruzsa, Zoltan
    Gupta, Archna
    Naidu, Subbaram
    Kalra, Mannudeep
    DIAGNOSTICS, 2021, 11 (08)