Grading of lung adenocarcinomas with simultaneous segmentation by artificial intelligence (GLASS-AI)

被引:2
|
作者
Lockhart, John H. [1 ,2 ]
Ackerman, Hayley D. [1 ,2 ]
Lee, Kyubum [3 ]
Abdalah, Mahmoud [4 ]
Davis, Andrew John [1 ,2 ]
Hackel, Nicole [1 ,2 ]
Boyle, Theresa A. [5 ]
Saller, James [5 ]
Keske, Aysenur [6 ]
Hanggi, Kay [6 ]
Ruffell, Brian [6 ]
Stringfield, Olya [4 ]
Cress, W. Douglas [1 ]
Tan, Aik Choon [3 ]
Flores, Elsa R. [1 ,2 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Mol Oncol, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Canc Biol & Evolut Program, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Biostat & Bioinformat, Tampa, FL 33612 USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Quantitat Imaging Core, Tampa, FL 33612 USA
[5] H Lee Moffitt Canc Ctr & Res Inst, Anat Pathol, Tampa, FL 33612 USA
[6] H Lee Moffitt Canc Ctr & Res Inst, Immunol, Tampa, FL 33612 USA
关键词
INTRATUMOR HETEROGENEITY; CANCER; INITIATION;
D O I
10.1038/s41698-023-00419-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Preclinical genetically engineered mouse models (GEMMs) of lung adenocarcinoma are invaluable for investigating molecular drivers of tumor formation, progression, and therapeutic resistance. However, histological analysis of these GEMMs requires significant time and training to ensure accuracy and consistency. To achieve a more objective and standardized analysis, we used machine learning to create GLASS-AI, a histological image analysis tool that the broader cancer research community can utilize to grade, segment, and analyze tumors in preclinical models of lung adenocarcinoma. GLASS-AI demonstrates strong agreement with expert human raters while uncovering a significant degree of unreported intratumor heterogeneity. Integrating immunohistochemical staining with high-resolution grade analysis by GLASS-AI identified dysregulation of Mapk/Erk signaling in high-grade lung adenocarcinomas and locally advanced tumor regions. Our work demonstrates the benefit of employing GLASS-AI in preclinical lung adenocarcinoma models and the power of integrating machine learning and molecular biology techniques for studying the molecular pathways that underlie cancer progression.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Longitudinal assessment of interstitial lung abnormalities on CT in patients with COPD using artificial intelligence-based segmentation: a prospective observational study
    Shiraishi, Yusuke
    Tanabe, Naoya
    Sakamoto, Ryo
    Maetani, Tomoki
    Kaji, Shizuo
    Shima, Hiroshi
    Terada, Satoru
    Terada, Kunihiko
    Ikezoe, Kohei
    Tanizawa, Kiminobu
    Oguma, Tsuyoshi
    Handa, Tomohiro
    Sato, Susumu
    Muro, Shigeo
    Hirai, Toyohiro
    BMC PULMONARY MEDICINE, 2024, 24 (01)
  • [42] Evaluation of risk stratification and management of lung nodules using an artificial intelligence GPT model: A proof of concept and considerations for privacy-preserving AI
    Lim, A. M.
    Chan, R.
    Oberndorf, J. K.
    Perumbeti, A.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2025, 73 (01) : 192 - 195
  • [46] Accuracy of Integrated Artificial Intelligence (AI) Grading at the Point of Care (POC) Using Handheld Retinal Imaging in a Community-Based Diabetic Retinopathy (DR) Screening Program (DRSP)
    Salongcay, Recivall
    Anne Aquino, Lizzie
    Michael Salva, Claude
    Paulo Alog, Glenn
    Locaylocay, Kaye
    Viguilla Saunar, Aileen
    Jacoba, Cris Martin P.
    Sun, Jennifer K.
    Aiello, Lloyd P.
    Peto, Tunde
    Silva, Paolo S.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [47] Deep-learning artificial intelligence (AI) model for accurate Spine Segmentation (SpS) in multi vendors antero-posterior (AP) Spine DXA scans
    Lebrahim, El Hassen Ahmed
    Gatineau, Guillaume
    Shevroja, Enisa
    Lamy, Olivier
    Beauge, Lionel
    Hans, Didier
    JOURNAL OF BONE AND MINERAL RESEARCH, 2023, 38 : 152 - 152
  • [48] CORRELATING MALIGNANCY RISK FROM AN ARTIFICIAL INTELLIGENCE (AI) ALGORITHM AND LUNG-RADS-BASED CLASSIFICATION FROM SCREENING LOW-DOSE CT IMAGING
    Ebrahimian, Shadi
    Kathait, Anjaneya Singh
    Digumarthy, Subba
    Prakash, Vanapalli
    Challa, Vikash
    Putha, Preetham
    Modi, Ankit
    Bizzo, Bernardo C.
    Dreyer, Keith J.
    Kalra, Mannudeep K.
    Dasegowda, Giridhar
    CHEST, 2022, 162 (04) : 1598A - 1599A
  • [49] A comprehensive review of optic disc segmentation methods in adult and pediatric retinal images: from conventional methods to artificial intelligence (CR-ODSeg-AP-CM2AI)
    Bansal, Avinash
    Kubicek, Jan
    Penhaker, Marek
    Augustynek, Martin
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (04)
  • [50] The Value of Artificial Intelligence Versus Traditional Lung Cancer Risk Prediction Models for Ground-glass and Pure-solid Pulmonary Nodules in Asia
    Li, Y.
    Li, W.
    Ao, M.
    Lan, J.
    Liu, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209