Grading of lung adenocarcinomas with simultaneous segmentation by artificial intelligence (GLASS-AI)

被引:2
|
作者
Lockhart, John H. [1 ,2 ]
Ackerman, Hayley D. [1 ,2 ]
Lee, Kyubum [3 ]
Abdalah, Mahmoud [4 ]
Davis, Andrew John [1 ,2 ]
Hackel, Nicole [1 ,2 ]
Boyle, Theresa A. [5 ]
Saller, James [5 ]
Keske, Aysenur [6 ]
Hanggi, Kay [6 ]
Ruffell, Brian [6 ]
Stringfield, Olya [4 ]
Cress, W. Douglas [1 ]
Tan, Aik Choon [3 ]
Flores, Elsa R. [1 ,2 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Mol Oncol, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Canc Biol & Evolut Program, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Biostat & Bioinformat, Tampa, FL 33612 USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Quantitat Imaging Core, Tampa, FL 33612 USA
[5] H Lee Moffitt Canc Ctr & Res Inst, Anat Pathol, Tampa, FL 33612 USA
[6] H Lee Moffitt Canc Ctr & Res Inst, Immunol, Tampa, FL 33612 USA
关键词
INTRATUMOR HETEROGENEITY; CANCER; INITIATION;
D O I
10.1038/s41698-023-00419-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Preclinical genetically engineered mouse models (GEMMs) of lung adenocarcinoma are invaluable for investigating molecular drivers of tumor formation, progression, and therapeutic resistance. However, histological analysis of these GEMMs requires significant time and training to ensure accuracy and consistency. To achieve a more objective and standardized analysis, we used machine learning to create GLASS-AI, a histological image analysis tool that the broader cancer research community can utilize to grade, segment, and analyze tumors in preclinical models of lung adenocarcinoma. GLASS-AI demonstrates strong agreement with expert human raters while uncovering a significant degree of unreported intratumor heterogeneity. Integrating immunohistochemical staining with high-resolution grade analysis by GLASS-AI identified dysregulation of Mapk/Erk signaling in high-grade lung adenocarcinomas and locally advanced tumor regions. Our work demonstrates the benefit of employing GLASS-AI in preclinical lung adenocarcinoma models and the power of integrating machine learning and molecular biology techniques for studying the molecular pathways that underlie cancer progression.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Evolution of radiology staff perspectives during artificial intelligence (AI) implementation for expedited lung cancer triage
    Togher, D.
    Dean, G.
    Moon, J.
    Mayola, R.
    Medina, A.
    Repec, J.
    Meheux, M.
    Mather, S.
    Storey, M.
    Rickaby, S.
    Abubacker, M. Z.
    Shelmerdine, S. C.
    CLINICAL RADIOLOGY, 2025, 81
  • [22] Fully automated artificial intelligence (AI) pipeline for feature-based segmentation and classification of diabetic retinopathy in fundus photographs
    Wu, Yue
    Wang, Fenghua
    Xiao, Sa
    Kihara, Yuka
    Spaide, Ted
    Lee, Cecilia S.
    Lee, Aaron Y.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [23] Utility of AI (Artificial Intelligence) tool for automatic segmentation and calculation of quantitative PET parameters compared to conventional manual segmentation in patients of Hodgkin's Lymphoma
    Sagar, S.
    Khan, D.
    Babu, A. S.
    Pathak, J.
    Mahalik, A.
    Jha, S.
    Shamim, S. A.
    Kumar, R.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S626 - S626
  • [24] Artificial intelligence (AI) molecular analysis tool assists in rapid treatment decision in lung cancer: a case report
    Waissengrin, Barliz
    Garasimov, Alexandra
    Bainhoren, Or
    Merimsky, Ofer
    Shamai, Sivan
    Erental, Ariel
    Wolf, Ido
    Hershkovitz, Dov
    JOURNAL OF CLINICAL PATHOLOGY, 2023, 76 (11) : 790 - 792
  • [25] CLINICAL ACCEPTABILITY OF ARTIFICIAL INTELLIGENCE-SCREENED INTERSTITIAL LUNG DISEASE (AI-ILD) IN LUNG CANCER PATIENTS TREATED WITH RADIOTHERAPY
    McNeil, Nicholas
    Bacon, Hannah
    Kandel, Sonja
    Patel, Tirth
    Welch, Mattea
    Ye, Xiang Y.
    McIntosh, Chris
    Bezjak, Andrea
    Lok, Benjamin H.
    Raman, Srinivas
    Giuliani, Meredith
    Cho, John
    Sun, Alexander
    Lindsay, Patricia
    Liu, Geoffrey
    Tadic, Tony
    Hope, Andrew
    RADIOTHERAPY AND ONCOLOGY, 2023, 186 : S31 - S31
  • [26] Video-Based Artificial Intelligence in Thoracoscopic Lobectomy for Lung Cancer: Surgical Structures Segmentation and Phase Recognition
    Liang, H.
    Yan, Z.
    Zhang, Y.
    He, J.
    JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (11) : S137 - S138
  • [27] Cyst Volume and Number Determined by Semi-automated Analysis and Artificial Intelligence (AI) in Diffuse Cystic Lung Diseases
    Lynn, E.
    Noonan, K. J.
    Hearne, R. T.
    Sekimoto, Y.
    Gaffney, B.
    Morrow, J.
    Murphy, D. J.
    Franciosi, A. N.
    Keane, M. P.
    Currran, K.
    Mccarthy, C.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [28] Exploring treatment patterns and outcomes of patients with advanced lung cancer (aLC) using artificial intelligence (AI)-extracted data
    Cheung, W. Y.
    Farrer, C.
    Darwish, L.
    Pettengell, C.
    Stewart, E. L.
    ANNALS OF ONCOLOGY, 2021, 32 : S1407 - S1407
  • [29] Application of Artificial Intelligence for Classification, Segmentation, Early Detection, Early Diagnosis, and Grading of Diabetic Retinopathy From Fundus Retinal Images: A Comprehensive Review
    Rajarajeshwari, G.
    Selvi, G. Chemmalar
    IEEE ACCESS, 2024, 12 : 172499 - 172536
  • [30] Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review
    Sathyakumar, Kaviya
    Munoz, Michael
    Singh, Jaikaran
    Hussain, Nowair
    Babu, Benson A.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (08)