Parameter, input and state estimation for linear structural dynamics using parametric model order reduction and augmented Kalman filtering

被引:6
|
作者
Capalbo, Cristian Enrico [1 ,2 ]
De Gregoriis, Daniel [2 ]
Tamarozzi, Tommaso [2 ]
Devriendt, Hendrik [3 ,4 ]
Naets, Frank [3 ,4 ]
Carbone, Giuseppe [1 ]
Mundo, Domenico [1 ]
机构
[1] Univ Calabria, Dept Mech Energy & Management Engn, Cubo 45C, I-87036 Arcavacata Di Rende, Italy
[2] Siemens Ind Software NV, Interleuvenlaan 68, B-3001 Leuven, Belgium
[3] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300 B, B-3001 Heverlee, Belgium
[4] Flanders Make KU Leuven, DMMS Core lab, Gaston Geenslaan 8, B-3001 Heverlee, Belgium
关键词
Structural dynamics; Parameter-input-state estimation; Parametric model order reduction; Augmented extended Kalman filter; Parameter identification; FORCE IDENTIFICATION; SYSTEMS; FIELD;
D O I
10.1016/j.ymssp.2022.109799
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Tracking the evolution in time of parameters, input and states of a structural dynamic system is often difficult, since their direct measurement can be problematic or even impossible. It is of great interest to estimate these quantities based on output-only data from a limited set of sensors. This work proposes an estimation technique for states, inputs and material parameters for structural dynamics models based on an Augmented Extended Kalman Filter. A parametric Model Order Reduction technique is proposed to construct a Reduced Order Model which maintains an explicit dependency on material parameters, enabling the parameter estimation thanks to a low computational cost and an efficient derivation of the linearized system. The choice of sensor configurations that ensure the observability of unknown quantities is discussed as well. The proposed methodology shows highly promising results and could be employed for model refinement or condition monitoring. The methodology is validated both numerically and experimentally, using data acquired on a scaled wind turbine blade, with errors on the estimated parameters lower than 3.5% with respect to experimentally identified parameter values.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Coupled state-input-parameter estimation for structural dynamics through Kalman filtering
    Naets, Frank
    Croes, Jan
    Desmet, Wim
    [J]. EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, 2014, : 3045 - 3052
  • [2] An adaptive-noise Augmented Kalman Filter approach for input-state estimation in structural dynamics
    Vettori, S.
    Di Lorenzo, E.
    Peeters, B.
    Luczak, M. M.
    Chatzi, E.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 184
  • [3] An online coupled state/input/parameter estimation approach for structural dynamics
    Naets, F.
    Croes, J.
    Desmet, W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 1167 - 1188
  • [4] State Estimation of DFIG using an Extended Kalman Filter with an Augmented State Model
    Malakar, Mridul Kanti
    Tripathy, Praveen
    Krishnaswamy, Srinivasan
    [J]. 2014 EIGHTEENTH NATIONAL POWER SYSTEMS CONFERENCE (NPSC), 2014,
  • [5] Combined state and parameter estimation for Hammerstein systems with time delay using the Kalman filtering
    Ma, Junxia
    Ding, Feng
    Xiong, Weili
    Yang, Erfu
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (08) : 1139 - 1151
  • [6] Suboptimal Kalman Filtering in Triplet Markov Models Using Model Order Reduction
    Lehmann, Frederic
    Pieczynski, Wojciech
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1100 - 1104
  • [7] Combined state and parameter estimation for a landslide model using Kalman filter
    Mishra, Mohit
    Besancon, Gildas
    Chambon, Guillaume
    Baillet, Laurent
    [J]. IFAC PAPERSONLINE, 2021, 54 (07): : 304 - 309
  • [8] Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering
    Kan, Xiu
    Shu, Huisheng
    Che, Yan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [9] Simultaneous State and Parameter Estimation of Li-Ion Battery with One State Hysteresis Model using Augmented Unscented Kalman Filter
    Biswas, Atriya
    Gu, Ran
    Kollmeyer, Phil
    Ahmed, Ryan
    Emadi, Ali
    [J]. 2018 IEEE TRANSPORTATION AND ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2018, : 1065 - 1070
  • [10] An Iterative Augmented Unscented Kalman Particle Filter for Simultaneous State-Parameter-Input Estimation for Structural Systems Subjected to Gamma-Distribution Noise
    Yu, Tianhao
    Wang, Jingfeng
    Wang, Wanqian
    [J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024,