Suboptimal Kalman Filtering in Triplet Markov Models Using Model Order Reduction

被引:10
|
作者
Lehmann, Frederic [1 ]
Pieczynski, Wojciech [1 ]
机构
[1] Telecom SudParis, Inst Polytech Paris, SAMOVAR, F-91011 Evry, France
关键词
Hidden Markov models; Biological system modeling; Kalman filters; Read only memory; Markov processes; Manganese; Microsoft Windows; Triplet Markov models; pairwise Markov models; Kalman filter; model order reduction; colored process noise;
D O I
10.1109/LSP.2020.3002420
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When the state space dimension increases, the computational burden can become a major challenge for optimal Kalman filtering in Gaussian triplet Markov models (TMMs). In this paper, we introduce a new model order reduction technique applicable to linear time-homogeneous Gaussian TMMs. Taking advantage of the lower state dimension of the resulting approximate model, a low-complexity suboptimal Kalman filter is obtained. The proposed estimator provides complexity reduction without significant accuracy loss and is shown to outperform two classical methods in the case of Markovian process noise.
引用
收藏
页码:1100 / 1104
页数:5
相关论文
共 50 条
  • [1] Triplet Markov models and Kalman filtering
    Desbouvries, F
    Pieczynski, W
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 336 (08) : 667 - 670
  • [2] KALMAN FILTERING APPROXIMATIONS IN TRIPLET MARKOV GAUSSIAN SWITCHING MODELS
    Abbassi, Noufel
    Benboudjema, Dalila
    Pieczynski, Wojciech
    [J]. 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 77 - 80
  • [3] Kalman filtering in triplet Markov chains
    Ait-El-Fquih, Boujernaa
    Desbouvries, Francois
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (08) : 2957 - 2963
  • [4] Kalman filtering for triplet Markov Chains: Applications and extensions
    El Fquih, BA
    Desbouvries, F
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 685 - 688
  • [6] Reduced-Dimension Filtering in Triplet Markov Models
    Lehmann, Frederic
    Pieczynski, Wojciech
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (02) : 605 - 617
  • [7] Lumpable hidden Markov models - Model reduction and reduced complexity filtering
    White, LB
    Mahony, R
    Brushe, GD
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (12) : 2297 - 2306
  • [8] KALMAN FILTERING FOR 2ND-ORDER MODELS
    HASHEMIPOUR, HR
    LAUB, AJ
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1988, 11 (02) : 181 - 186
  • [9] A Novel Algorithmic Trading Strategy using Hidden Markov Model for Kalman Filtering Innovations
    Johnson-Skinner, Ethan
    Liang, You
    Yu, Na
    Morariu, Alin
    [J]. 2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1766 - 1771
  • [10] Parameter, input and state estimation for linear structural dynamics using parametric model order reduction and augmented Kalman filtering
    Capalbo, Cristian Enrico
    De Gregoriis, Daniel
    Tamarozzi, Tommaso
    Devriendt, Hendrik
    Naets, Frank
    Carbone, Giuseppe
    Mundo, Domenico
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 185