Parameter, input and state estimation for linear structural dynamics using parametric model order reduction and augmented Kalman filtering

被引:6
|
作者
Capalbo, Cristian Enrico [1 ,2 ]
De Gregoriis, Daniel [2 ]
Tamarozzi, Tommaso [2 ]
Devriendt, Hendrik [3 ,4 ]
Naets, Frank [3 ,4 ]
Carbone, Giuseppe [1 ]
Mundo, Domenico [1 ]
机构
[1] Univ Calabria, Dept Mech Energy & Management Engn, Cubo 45C, I-87036 Arcavacata Di Rende, Italy
[2] Siemens Ind Software NV, Interleuvenlaan 68, B-3001 Leuven, Belgium
[3] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300 B, B-3001 Heverlee, Belgium
[4] Flanders Make KU Leuven, DMMS Core lab, Gaston Geenslaan 8, B-3001 Heverlee, Belgium
关键词
Structural dynamics; Parameter-input-state estimation; Parametric model order reduction; Augmented extended Kalman filter; Parameter identification; FORCE IDENTIFICATION; SYSTEMS; FIELD;
D O I
10.1016/j.ymssp.2022.109799
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Tracking the evolution in time of parameters, input and states of a structural dynamic system is often difficult, since their direct measurement can be problematic or even impossible. It is of great interest to estimate these quantities based on output-only data from a limited set of sensors. This work proposes an estimation technique for states, inputs and material parameters for structural dynamics models based on an Augmented Extended Kalman Filter. A parametric Model Order Reduction technique is proposed to construct a Reduced Order Model which maintains an explicit dependency on material parameters, enabling the parameter estimation thanks to a low computational cost and an efficient derivation of the linearized system. The choice of sensor configurations that ensure the observability of unknown quantities is discussed as well. The proposed methodology shows highly promising results and could be employed for model refinement or condition monitoring. The methodology is validated both numerically and experimentally, using data acquired on a scaled wind turbine blade, with errors on the estimated parameters lower than 3.5% with respect to experimentally identified parameter values.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Extended Kalman filtering based real-time dynamic state and parameter estimation using PMU data
    Fan, Lingling
    Wehbe, Yasser
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2013, 103 : 168 - 177
  • [22] Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition
    Ding, Feng
    Liu, Ximei
    Ma, Xingyun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 135 - 143
  • [23] Joint state estimation of indoor thermal dynamics with unknown inputs using augmented fading memory Kalman filter
    Das, Bed Prakash
    Das Sharma, Kaushik
    Chatterjee, Amitava
    Bera, Jitendranath
    [J]. JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2023, 16 (01) : 90 - 106
  • [24] Control of Parameter-dependent High-order Systems using Parametric Model Reduction
    Geuss, Matthias
    Choi, Cholwoo
    Lohmann, Boris
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (07) : 523 - 533
  • [25] Model selection and parameter estimation in structural dynamics using approximate Bayesian computation
    Ben Abdessalem, Anis
    Dervilis, Nikolaos
    Wagg, David
    Worden, Keith
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 99 : 306 - 325
  • [26] Input-parameter-state estimation of limited information wind-excited systems using a sequential Kalman filter
    Impraimakis, Marios
    Smyth, Andrew W.
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (04):
  • [27] Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering
    Ding, Feng
    Wang, Xuehai
    Mao, Li
    Xu, Ling
    [J]. DIGITAL SIGNAL PROCESSING, 2017, 62 : 211 - 223
  • [28] Simultaneous state estimation and parameter identification in linear fractional order systems using colouredmeasurement noise
    Safarinejadian, Behrooz
    Asad, Mojtaba
    Sadeghi, Mokhtar Sha
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (11) : 2277 - 2296
  • [29] A greedy sampling approach for the projection basis construction in parametric model order reduction for structural dynamics models
    Lappano, E.
    Naets, F.
    Desmet, W.
    Mundo, D.
    Nijman, E.
    [J]. PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 3563 - 3571
  • [30] Model order reduction using an adaptive basis for geometrically nonlinear structural dynamics
    Rutzmoser, J. B.
    Rixen, D. J.
    Tiso, P.
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2014) AND INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2014), 2014, : 2587 - 2595