Input-parameter-state estimation of limited information wind-excited systems using a sequential Kalman filter

被引:13
|
作者
Impraimakis, Marios [1 ]
Smyth, Andrew W. [1 ]
机构
[1] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
来源
基金
美国国家科学基金会;
关键词
input-parameter-state estimation; limited information; online; real-time nonlinear system identification; sequential Kalman filter; unknown; unmeasured input identification; wind loading; MINIMUM-VARIANCE INPUT; IDENTIFICATION; BUILDINGS;
D O I
10.1002/stc.2919
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The estimation of the dynamic states, the parameters, and the input of systems subjected to wind loading is examined herein using a sequential Kalman filter. The procedure considers two Kalman filters in order to estimate initially the dynamic states and subsequently the system parameters along with the input, in an online fashion. The approach results in an accurate convergence as demonstrated by two linear systems with limited information and two nonlinear applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A new residual-based Kalman filter for real time input-parameter-state estimation using limited output information
    Impraimakis, Marios
    Smyth, Andrew W.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 178
  • [2] Parameter Identification for Nonlinear Structures by a Constrained Kalman Filter with Limited Input Information
    Ding, Y.
    Guo, L. N.
    Zhao, B. Y.
    [J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2017, 17 (01)
  • [3] A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation
    Stroud, Jonathan R.
    Katzfuss, Matthias
    Wikle, Christopher K.
    [J]. MONTHLY WEATHER REVIEW, 2018, 146 (01) : 373 - 386
  • [4] Input-state-parameter estimation of structural systems from limited output information
    Dertimanis, V. K.
    Chatzi, E. N.
    Azam, S. Eftekhar
    Papadimitriou, C.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 126 : 711 - 746
  • [5] Simultaneous and sequential state and parameter estimation using receding-horizon nonlinear Kalman filter
    Rangegowda, Pavanraj H.
    Valluru, Jayaram
    Patwardhan, Sachin C.
    Mukhopadhyay, Siddhartha
    [J]. JOURNAL OF PROCESS CONTROL, 2022, 109 : 13 - 31
  • [6] State and parameter estimation using extended Kitanidis Kalman filter
    Varshney, Devyani
    Bhushan, Mani
    Patwardhan, Sachin C.
    [J]. JOURNAL OF PROCESS CONTROL, 2019, 76 : 98 - 111
  • [7] Variable Parameter Kalman Filter Based Dynamic Harmonic State Estimation for Power Systems with Wind Energy Integration
    Zang, Tianlei
    Wang, Yan
    Sun, Hongbin
    He, Zhengyou
    [J]. 2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [8] Combined state and parameter estimation for a landslide model using Kalman filter
    Mishra, Mohit
    Besancon, Gildas
    Chambon, Guillaume
    Baillet, Laurent
    [J]. IFAC PAPERSONLINE, 2021, 54 (07): : 304 - 309
  • [9] Online State and Parameter Estimation of Ultracapacitor Using Marginalized Kalman Filter
    Madhumitha, S.
    Sudheesh, P.
    Anita, J. P.
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 167 - 174
  • [10] Using sequential Kalman filters for state estimation of nonlinear systems
    Mohammadi, S.
    Mohammadi, A.
    Keivani, H.
    Askari, M. R.
    Kavehnia, F.
    Ghanbarian, M. M.
    [J]. PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 258 - +