Coupled state-input-parameter estimation for structural dynamics through Kalman filtering

被引:0
|
作者
Naets, Frank [1 ]
Croes, Jan [1 ]
Desmet, Wim [1 ]
机构
[1] Katholieke Univ Leuven, Fac Engn, Dept Mech Engn, B-3001 Heverlee, Belgium
关键词
Structural dynamics; state estimation; Kalman filter; LEVEL SYSTEM-IDENTIFICATION; REDUCTION;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In many practical structural applications, unknown states, inputs and parameters are present. However, most methods require one or more of these variables to be known in order to estimate the other(s). In this research an estimation technique which employs physical models is proposed to perform coupled state/input/parameter estimation. In order to obtain a modeling technique which allows the estimation of a wide range of parameters in a generic fashion at a minimal computational cost (even real-time), the use of a parametric model reduction technique is proposed. The reduced model is coupled to an extended Kalman filter (EKF) with augmented states for the unknown inputs and parameters. This leads to a very efficient framework for estimation in structural dynamics problems. The proposed methodology is validated experimentally on a cantilever beam with variable length. The approach is shown to be easy to tune and provides good results with different measurement methods.
引用
收藏
页码:3045 / 3052
页数:8
相关论文
共 50 条
  • [1] An online coupled state/input/parameter estimation approach for structural dynamics
    Naets, F.
    Croes, J.
    Desmet, W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 1167 - 1188
  • [2] Parameter, input and state estimation for linear structural dynamics using parametric model order reduction and augmented Kalman filtering
    Capalbo, Cristian Enrico
    De Gregoriis, Daniel
    Tamarozzi, Tommaso
    Devriendt, Hendrik
    Naets, Frank
    Carbone, Giuseppe
    Mundo, Domenico
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 185
  • [3] The study of joint input and state estimation with Kalman filtering
    Pan, Shuwen
    Su, Hongye
    Wang, Hong
    Chu, Jian
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2011, 33 (08) : 901 - 918
  • [4] A Kalman-filtering derivation of simultaneous input and state estimation
    Bitmead, Robert R.
    Hovd, Morten
    Abooshahab, Mohammad Ali
    [J]. AUTOMATICA, 2019, 108
  • [5] Unscented Kalman filtering for spacecraft attitude state and parameter estimation
    VanDyke, MC
    Schwartz, JL
    Hall, CD
    [J]. Spaceflight Mechanics 2004, Vol 119, Pt 1-3, 2005, 119 : 217 - 228
  • [6] Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering
    Goegebeur, Maarten
    Pauwels, Valentijn R. N.
    [J]. JOURNAL OF HYDROLOGY, 2007, 337 (3-4) : 436 - 451
  • [7] Online Input and State Estimation in Structural Dynamics
    Maes, K.
    De Roeck, G.
    Iliopoulos, A.
    Weijtjens, W.
    Devriendt, C.
    Lombaert, G.
    [J]. SPECIAL TOPICS IN STRUCTURAL DYNAMICS, VOL 6, 34TH IMAC, 2016, : 1 - 10
  • [8] Combined impulse-response/Kalman filtering (CIRKF) for input/state estimation
    Zapata, Luis M.
    Patalong, Matthias
    Teufelhart, Stefan
    Desmet, Wim
    Naets, Frank
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 181
  • [9] Deep learning of multibody minimal coordinates for state and input estimation with Kalman filtering
    Angeli, Andrea
    Desmet, Wim
    Naets, Frank
    [J]. MULTIBODY SYSTEM DYNAMICS, 2021, 53 (02) : 205 - 223
  • [10] Deep learning of multibody minimal coordinates for state and input estimation with Kalman filtering
    Andrea Angeli
    Wim Desmet
    Frank Naets
    [J]. Multibody System Dynamics, 2021, 53 : 205 - 223