Optimal Synchronization in Dynamically Coupled Fractional-order Chaotic Systems Based on Intelligent Optimization Algorithm with Simulink

被引:0
|
作者
Xi, Huiling [1 ]
Zhang, Ruixia [1 ]
机构
[1] North Univ China, Sch Math, Taiyuan 030051, Shanxi, Peoples R China
基金
山西省青年科学基金; 中国国家自然科学基金;
关键词
Dynamically coupled fractional-order chaotic system; Intelligent optimization algorithm; Matlab Simulink; Optimal synchronization; Sliding mode control;
D O I
10.1109/CCDC58219.2023.10327063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, for the synchronization control of the dynamically coupled fractional-order Rossler system, by reasonably selecting the optimization objective function and using the efficient global optimization ability of the intelligent optimization algorithm, the optimal values of the error system parameters are directly determined; besides, a fractional integral optimal sliding mode control laws is designed, so that the parameters are changed from unknown to known, which avoids the construction of Lyapunov function according to the Lyapunov stability principle and the large amount of calculation of trial and error method, and provides an idea for us to determine the parameters in the system or controller. With the help of MATLAB Simulink, the fractional differential solver is obtained and the Simulink block diagrams of the systems is made. The fast synchronization of the dynamically coupled drive and response system can be achieved by substituting the optimal parameter value into the systems. The numerical simulation results verify the feasibility and effectiveness of the proposed method.
引用
收藏
页码:538 / 544
页数:7
相关论文
共 50 条
  • [21] Synchronization of fractional-order chaotic systems with different structures
    Zhang Ruo-Xun
    Yang Shi-Ping
    ACTA PHYSICA SINICA, 2008, 57 (11) : 6852 - 6858
  • [22] Synchronization of fractional-order chaotic systems with uncertain parameters
    Zhang, Hong
    Pu, Qiumei
    ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 723 - 727
  • [23] Wavelet Phase Synchronization of Fractional-Order Chaotic Systems
    Chen Feng
    Xia Lei
    Li Chun-Guang
    CHINESE PHYSICS LETTERS, 2012, 29 (07)
  • [24] SIMPLE LMI-BASED SYNCHRONIZATION OF FRACTIONAL-ORDER CHAOTIC SYSTEMS
    Kuntanapreeda, Suwat
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (01):
  • [25] Function projective synchronization for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 811 - 816
  • [26] Prescribed performance synchronization for fractional-order chaotic systems
    Liu Heng
    Li Sheng-Gang
    Sun Ye-Guo
    Wang Hong-Xing
    CHINESE PHYSICS B, 2015, 24 (09)
  • [27] GENERALIZED SYNCHRONIZATION OF NONIDENTICAL FRACTIONAL-ORDER CHAOTIC SYSTEMS
    Wang Xing-Yuan
    Hu Zun-Wen
    Luo Chao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (30):
  • [28] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [29] Prescribed performance synchronization for fractional-order chaotic systems
    刘恒
    李生刚
    孙业国
    王宏兴
    Chinese Physics B, 2015, 24 (09) : 157 - 164
  • [30] The Synchronization of Three Fractional-Order Lorenz Chaotic Systems
    Yu, Yong-Guang
    Wen, Guo-Guang
    Li, Han-Xiong
    Diao, Miao
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (03) : 379 - 386