Optimal Synchronization in Dynamically Coupled Fractional-order Chaotic Systems Based on Intelligent Optimization Algorithm with Simulink

被引:0
|
作者
Xi, Huiling [1 ]
Zhang, Ruixia [1 ]
机构
[1] North Univ China, Sch Math, Taiyuan 030051, Shanxi, Peoples R China
基金
山西省青年科学基金; 中国国家自然科学基金;
关键词
Dynamically coupled fractional-order chaotic system; Intelligent optimization algorithm; Matlab Simulink; Optimal synchronization; Sliding mode control;
D O I
10.1109/CCDC58219.2023.10327063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, for the synchronization control of the dynamically coupled fractional-order Rossler system, by reasonably selecting the optimization objective function and using the efficient global optimization ability of the intelligent optimization algorithm, the optimal values of the error system parameters are directly determined; besides, a fractional integral optimal sliding mode control laws is designed, so that the parameters are changed from unknown to known, which avoids the construction of Lyapunov function according to the Lyapunov stability principle and the large amount of calculation of trial and error method, and provides an idea for us to determine the parameters in the system or controller. With the help of MATLAB Simulink, the fractional differential solver is obtained and the Simulink block diagrams of the systems is made. The fast synchronization of the dynamically coupled drive and response system can be achieved by substituting the optimal parameter value into the systems. The numerical simulation results verify the feasibility and effectiveness of the proposed method.
引用
收藏
页码:538 / 544
页数:7
相关论文
共 50 条
  • [31] A New Method on Synchronization of Fractional-Order Chaotic Systems
    Wang, Zhiliang
    Zhang, Huaguang
    Li, Yongfeng
    Sun, Ning
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 3557 - +
  • [32] A practical synchronization approach for fractional-order chaotic systems
    Ping Zhou
    Peng Zhu
    Nonlinear Dynamics, 2017, 89 : 1719 - 1726
  • [33] A practical synchronization approach for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Peng
    NONLINEAR DYNAMICS, 2017, 89 (03) : 1719 - 1726
  • [34] Synchronization of fractional-order chaotic systems based on adaptive fuzzy control
    Chen Ye
    Li Sheng-Gang
    Liu Heng
    ACTA PHYSICA SINICA, 2016, 65 (17)
  • [35] CHAOTIC SYNCHRONIZATION OF FRACTIONAL-ORDER MODIFIED COUPLED DYNAMOS SYSTEM
    Wang, Xingyuan
    He, Yijie
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (31): : 5769 - 5777
  • [36] CHAOTIC SYNCHRONIZATION OF FRACTIONAL-ORDER SPATIOTEMPORAL COUPLED LORENZ SYSTEM
    Wang, Xing-Yuan
    Zhang, Hao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (10):
  • [37] Generalized projective synchronization for fractional-order chaotic systems with different fractional order
    Zhou, Ping
    Ding, Rui
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2106 - +
  • [38] Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection
    Delshad, Saleh Sayyad
    Asheghan, Mohammad Mostafa
    Beheshti, Mohammadtaghi Hamidi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) : 3815 - 3824
  • [39] Synchronization of uncertain fractional-order chaotic systems via the fractional-order sliding mode controller
    Yan, Xiaomei
    Shang, Ting
    Zhao, Xiaoguo
    Ji, Ruirui
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1444 - 1449
  • [40] Projective Synchronization for a Class of Fractional-Order Chaotic Systems with Fractional-Order in the (1, 2) Interval
    Zhou, Ping
    Bai, Rongji
    Zheng, Jiming
    ENTROPY, 2015, 17 (03): : 1123 - 1134