Optimal Synchronization in Dynamically Coupled Fractional-order Chaotic Systems Based on Intelligent Optimization Algorithm with Simulink

被引:0
|
作者
Xi, Huiling [1 ]
Zhang, Ruixia [1 ]
机构
[1] North Univ China, Sch Math, Taiyuan 030051, Shanxi, Peoples R China
基金
山西省青年科学基金; 中国国家自然科学基金;
关键词
Dynamically coupled fractional-order chaotic system; Intelligent optimization algorithm; Matlab Simulink; Optimal synchronization; Sliding mode control;
D O I
10.1109/CCDC58219.2023.10327063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, for the synchronization control of the dynamically coupled fractional-order Rossler system, by reasonably selecting the optimization objective function and using the efficient global optimization ability of the intelligent optimization algorithm, the optimal values of the error system parameters are directly determined; besides, a fractional integral optimal sliding mode control laws is designed, so that the parameters are changed from unknown to known, which avoids the construction of Lyapunov function according to the Lyapunov stability principle and the large amount of calculation of trial and error method, and provides an idea for us to determine the parameters in the system or controller. With the help of MATLAB Simulink, the fractional differential solver is obtained and the Simulink block diagrams of the systems is made. The fast synchronization of the dynamically coupled drive and response system can be achieved by substituting the optimal parameter value into the systems. The numerical simulation results verify the feasibility and effectiveness of the proposed method.
引用
收藏
页码:538 / 544
页数:7
相关论文
共 50 条
  • [11] Chaotic synchronization for a class of fractional-order chaotic systems
    Zhou Ping
    CHINESE PHYSICS, 2007, 16 (05): : 1263 - 1266
  • [12] Chaotic synchronization for a class of fractional-order chaotic systems
    Institute for Nonlinear Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    Chin. Phys., 2007, 5 (1263-1266):
  • [13] Synchronization of Fractional-Order Complex Chaotic Systems Based on Observers
    Li, Zhonghui
    Xia, Tongshui
    Jiang, Cuimei
    ENTROPY, 2019, 21 (05)
  • [14] Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems
    Ammar Soukkou
    Abdelkrim Boukabou
    Salah Leulmi
    Nonlinear Dynamics, 2016, 85 : 2183 - 2206
  • [15] Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems
    Soukkou, Ammar
    Boukabou, Abdelkrim
    Leulmi, Salah
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2183 - 2206
  • [16] Synchronization of two coupled fractional-order chaotic oscillators
    Gao, X
    Yu, JB
    CHAOS SOLITONS & FRACTALS, 2005, 26 (01) : 141 - 145
  • [17] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [18] Chaotic synchronization between different fractional-order chaotic systems
    Zhou, Ping
    Ding, Rui
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10): : 2839 - 2848
  • [19] Synchronization of N-coupled fractional-order chaotic systems with ring connection
    Tang, Yang
    Fang, Jian-an
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) : 401 - 412
  • [20] Adaptive synchronization of a class of fractional-order chaotic systems
    Ma Tie-Dong
    Jiang Wei-Bo
    Fu Jie
    Chai Yi
    Chen Li-Ping
    Xue Fang-Zheng
    ACTA PHYSICA SINICA, 2012, 61 (16)