SIMPLE LMI-BASED SYNCHRONIZATION OF FRACTIONAL-ORDER CHAOTIC SYSTEMS

被引:3
|
作者
Kuntanapreeda, Suwat [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Engn, Dept Mech & Aerosp Engn, Bangkok 10800, Thailand
来源
关键词
Chaos synchronization; fractional-order chaotic systems; linear control; linear matrix inequality (LMI); LORENZ SYSTEM; HYPERCHAOS;
D O I
10.1142/S0218127413500119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a simple scheme for synchronization of fractional-order chaotic systems. The scheme utilizes a recently developed LMI (Linear matrix inequality) stabilization theorem for fractional-order linear interval systems to design a linear controller. In contrast to existing schemes in the literature, the present scheme is straightforward and does not require that non-linear parts of synchronization error dynamics are cancelled by the controller. The fractional-order Rossler, Lorenz, and hyperchaotic Chen systems are used as demonstrative examples. Numerical results illustrate the effectiveness of the present scheme.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] LMI-based stabilization of a class of fractional-order chaotic systems
    Faieghi, Mohammadreza
    Kuntanapreeda, Suwat
    Delavari, Hadi
    Baleanu, Dumitru
    [J]. NONLINEAR DYNAMICS, 2013, 72 (1-2) : 301 - 309
  • [2] LMI-based stabilization of a class of fractional-order chaotic systems
    Mohammadreza Faieghi
    Suwat Kuntanapreeda
    Hadi Delavari
    Dumitru Baleanu
    [J]. Nonlinear Dynamics, 2013, 72 : 301 - 309
  • [3] Robust stabilization of fractional-order chaotic systems with linear controllers: LMI-based sufficient conditions
    Faieghi, Mohammad Reza
    Kuntanapreeda, Suwat
    Delavari, Hadi
    Baleanu, Dumitru
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (07) : 1042 - 1051
  • [4] LMI-based robust control of fractional-order uncertain linear systems
    Lan, Yong-Hong
    Zhou, Yong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1460 - 1471
  • [5] An Iterative LMI-Based Reduced-Order Observer Design for Fractional-Order Chaos Synchronization
    Mahdi Pourgholi
    Elham Amini Boroujeni
    [J]. Circuits, Systems, and Signal Processing, 2016, 35 : 1855 - 1870
  • [6] Synchronization of fractional chaotic systems based on fractional-order interval systems
    Sun Ning
    [J]. ACTA PHYSICA SINICA, 2011, 60 (12)
  • [7] Synchronization of fractional-order chaotic systems
    Gao, X
    Yu, JB
    [J]. 2005 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS: VOL 1: COMMUNICATION THEORY AND SYSTEMS, 2005, : 1169 - 1172
  • [8] An Iterative LMI-Based Reduced-Order Observer Design for Fractional-Order Chaos Synchronization
    Pourgholi, Mahdi
    Boroujeni, Elham Amini
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (06) : 1855 - 1870
  • [9] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    [J]. CHINESE PHYSICS B, 2010, 19 (09)
  • [10] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    [J]. Chinese Physics B, 2010, 19 (09) : 237 - 242