Biodegradable, Self-Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches

被引:10
|
作者
Rohringer, Sabrina [1 ,2 ,3 ]
Grasl, Christian [3 ,4 ]
Ehrmann, Katharina [1 ,2 ,5 ]
Hager, Pia [1 ,3 ]
Hahn, Clemens [1 ,3 ]
Specht, Sophie J. [1 ,3 ]
Walter, Ingrid [6 ]
Schneider, Karl H. [1 ,2 ,3 ]
Zopf, Lydia M. [2 ,7 ]
Baudis, Stefan [2 ,5 ]
Liska, Robert [2 ,5 ]
Schima, Heinrich [3 ,4 ]
Podesser, Bruno K. [1 ,2 ,3 ]
Bergmeister, Helga [1 ,2 ,3 ]
机构
[1] Med Univ Vienna, Ctr Biomed Res & Translat Surg, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
[2] Austrian Cluster Tissue Regenerat, Donaueschingenstr 13, A-1200 Vienna, Austria
[3] Ludwig Boltzmann Inst Cardiovasc Res, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
[4] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
[5] Vienna Univ Technol, Inst Appl Synthet Chem, Getreidemarkt 9-163, A-1060 Vienna, Austria
[6] Univ Vet Med, Dept Pathobiol, Vet Pl 1, A-1210 Vienna, Austria
[7] Ludwig Boltzmann Inst Traumatol, Donaueschingenstr 13, A-1200 Vienna, Austria
关键词
biodegradables; self-reinforcing; small diameter vascular grafts; tissue engineering; MECHANICAL-PROPERTIES; POLYURETHANE GRAFTS; INTIMAL HYPERPLASIA; COMPLIANCE MISMATCH; CURRENT STRATEGIES; PLATELET-ADHESION; LIPID DROPLETS; BLOOD-VESSELS; MANUFACTURE; EXPERIENCE;
D O I
10.1002/adhm.202300520
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Clinically available small-diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self-reinforcing TP(U-urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro-computed tomography (mu CT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto- and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self-reinforcing SDVGs may be promising candidates for clinical use in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts
    Soletti, Lorenzo
    Hong, Yi
    Guan, Jianjun
    Stankus, John J.
    El-Kurdi, Mohammed S.
    Wagner, William R.
    Vorp, David A.
    ACTA BIOMATERIALIA, 2010, 6 (01) : 110 - 122
  • [42] Electrospun vein grafts with high cell infiltration for vascular tissue engineering
    Tan, Zhikai
    Gao, Xiangkai
    Liu, Tong
    Yang, Yikun
    Zhong, Juchang
    Tong, Chunyi
    Tan, Yongjun
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 81 : 407 - 415
  • [43] Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts
    Carrabba, Michele
    Madeddu, Paolo
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2018, 6
  • [44] Tissue engineering of small-diameter vascular grafts: A literature review
    Song, Y.
    Feijen, J.
    Grijpma, D. W.
    Poot, A. A.
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2011, 49 (1-4) : 357 - 374
  • [45] Decellularised scaffolds as a potential for vascular tissue engineering of small calibre grafts
    Derham, C.
    Yow, H.
    Ingram, J.
    Ingham, E.
    Homer-Vanniasinkam, S.
    ANNALS OF THE ROYAL COLLEGE OF SURGEONS OF ENGLAND, 2006, 88 (06) : 594 - 594
  • [46] Tissue engineering of vascular bypass grafts: Role of endothelial cell extraction
    Tiwari, A
    Salacinski, HJ
    Hamilton, G
    Seifalian, AM
    EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 2001, 21 (03) : 193 - 201
  • [47] Vitrified Human Umbilical Arteries as Potential Grafts for Vascular Tissue Engineering
    Panagiotis Mallis
    Michalis Katsimpoulas
    Alkiviadis Kostakis
    Daniele Dipresa
    Sotiris Korossis
    Aggeliki Papapanagiotou
    Eva Kassi
    Catherine Stavropoulos-Giokas
    Efstathios Michalopoulos
    Tissue Engineering and Regenerative Medicine, 2020, 17 : 285 - 299
  • [48] Vitrified Human Umbilical Arteries as Potential Grafts for Vascular Tissue Engineering
    Mallis, Panagiotis
    Katsimpoulas, Michalis
    Kostakis, Alkiviadis
    Dipresa, Daniele
    Korossis, Sotiris
    Papapanagiotou, Aggeliki
    Kassi, Eva
    Stavropoulos-Giokas, Catherine
    Michalopoulos, Efstathios
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 17 (03) : 285 - 299
  • [49] Tissue engineering vascular grafts a fortiori: looking back and going forward
    Natasha, G.
    Tan, Aaron
    Gundogan, Buket
    Farhatnia, Yasmin
    Nayyer, Leila
    Mandibeiraghdar, Sara
    Rajadas, Jayakumar
    De Coppi, Paolo
    Davies, Alun H.
    Seifalian, Alexander M.
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2015, 15 (02) : 231 - 244
  • [50] Strategies and Techniques to Enhance the In Situ Endothelialization of Small-Diameter Biodegradable Polymeric Vascular Grafts
    Melchiorri, Anthony J.
    Hibino, Narutoshi
    Fisher, John P.
    TISSUE ENGINEERING PART B-REVIEWS, 2013, 19 (04) : 292 - 307