Biodegradable, Self-Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches

被引:10
|
作者
Rohringer, Sabrina [1 ,2 ,3 ]
Grasl, Christian [3 ,4 ]
Ehrmann, Katharina [1 ,2 ,5 ]
Hager, Pia [1 ,3 ]
Hahn, Clemens [1 ,3 ]
Specht, Sophie J. [1 ,3 ]
Walter, Ingrid [6 ]
Schneider, Karl H. [1 ,2 ,3 ]
Zopf, Lydia M. [2 ,7 ]
Baudis, Stefan [2 ,5 ]
Liska, Robert [2 ,5 ]
Schima, Heinrich [3 ,4 ]
Podesser, Bruno K. [1 ,2 ,3 ]
Bergmeister, Helga [1 ,2 ,3 ]
机构
[1] Med Univ Vienna, Ctr Biomed Res & Translat Surg, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
[2] Austrian Cluster Tissue Regenerat, Donaueschingenstr 13, A-1200 Vienna, Austria
[3] Ludwig Boltzmann Inst Cardiovasc Res, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
[4] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
[5] Vienna Univ Technol, Inst Appl Synthet Chem, Getreidemarkt 9-163, A-1060 Vienna, Austria
[6] Univ Vet Med, Dept Pathobiol, Vet Pl 1, A-1210 Vienna, Austria
[7] Ludwig Boltzmann Inst Traumatol, Donaueschingenstr 13, A-1200 Vienna, Austria
关键词
biodegradables; self-reinforcing; small diameter vascular grafts; tissue engineering; MECHANICAL-PROPERTIES; POLYURETHANE GRAFTS; INTIMAL HYPERPLASIA; COMPLIANCE MISMATCH; CURRENT STRATEGIES; PLATELET-ADHESION; LIPID DROPLETS; BLOOD-VESSELS; MANUFACTURE; EXPERIENCE;
D O I
10.1002/adhm.202300520
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Clinically available small-diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self-reinforcing TP(U-urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro-computed tomography (mu CT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto- and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self-reinforcing SDVGs may be promising candidates for clinical use in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Fibrin: A natural biodegradable scaffold in vascular tissue engineering
    Shaikh, Faisal M.
    Callanan, Anthony
    Kavanagh, Eamon G.
    Burke, Paul E.
    Grace, Pierce A.
    McGloughlin, Tim M.
    CELLS TISSUES ORGANS, 2008, 188 (04) : 333 - 346
  • [22] New developments in tissue engineering of vascular prosthetic grafts
    Aper, T.
    Haverich, A.
    Teebken, O.
    VASA-JOURNAL OF VASCULAR DISEASES, 2009, 38 (02): : 99 - 122
  • [23] Reconstruction of Vascular and Urologic Tubular Grafts by Tissue Engineering
    Caneparo, Christophe
    Chabaud, Stephane
    Bolduc, Stephane
    PROCESSES, 2021, 9 (03)
  • [24] A self-reinforcing biodegradable implant made of poly(ε-caprolactone)/calcium phosphate ceramic composite for craniomaxillofacial fracture fixation
    Wu, Chang-Chin
    Tsai, Yuh-Feng
    Hsu, Li-Ho
    Chen, Jo-Ping
    Sumi, Shoichiro
    Yang, Kai-Chiang
    JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2016, 44 (09) : 1333 - 1341
  • [25] Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts
    Leal, Bruna B. J.
    Wakabayashi, Naohiro
    Oyama, Kyohei
    Kamiya, Hiroyuki
    Braghirolli, Daikelly I.
    Pranke, Patricia
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 7
  • [26] Small Caliber Compliant Vascular Grafts Based on Elastin-Like Recombinamers for in situ Tissue Engineering
    Fernandez-Colino, Alicia
    Wolf, Frederic
    Ruetten, Stephan
    Schmitz-Rode, Thomas
    Carlos Rodriguez-Cabello, Jose
    Jockenhoevel, Stefan
    Mela, Petra
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7
  • [27] Vascular tissue engineering: from in vitro to in situ
    Li, Song
    Sengupta, Debanti
    Chien, Shu
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2014, 6 (01) : 61 - 76
  • [28] Design Approaches to Myocardial and Vascular Tissue Engineering
    Akintewe, Olukemi O.
    Roberts, Erin G.
    Rim, Nae-Gyune
    Ferguson, Michael A. H.
    Wong, Joyce Y.
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 19, 2017, 19 : 389 - 414
  • [29] Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering
    Gui, Liqiong
    Zhao, Liping
    Spencer, Randal W.
    Burghouwt, Arthur
    Taylor, M. Scott
    Shalaby, Shalaby W.
    Niklason, Laura E.
    TISSUE ENGINEERING PART A, 2011, 17 (9-10) : 1191 - 1200
  • [30] CELL SEEDING AND SCAFFOLD OPTIMISATION FOR TISSUE ENGINEERING VASCULAR GRAFTS
    Shaikh, F. M.
    Callanan, A.
    Kavanagh, E. G.
    Burke, P. E.
    Grace, P. A.
    McGloughlin, T. M.
    IRISH JOURNAL OF MEDICAL SCIENCE, 2007, 176 : S14 - S14