Biodegradable, Self-Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches

被引:10
|
作者
Rohringer, Sabrina [1 ,2 ,3 ]
Grasl, Christian [3 ,4 ]
Ehrmann, Katharina [1 ,2 ,5 ]
Hager, Pia [1 ,3 ]
Hahn, Clemens [1 ,3 ]
Specht, Sophie J. [1 ,3 ]
Walter, Ingrid [6 ]
Schneider, Karl H. [1 ,2 ,3 ]
Zopf, Lydia M. [2 ,7 ]
Baudis, Stefan [2 ,5 ]
Liska, Robert [2 ,5 ]
Schima, Heinrich [3 ,4 ]
Podesser, Bruno K. [1 ,2 ,3 ]
Bergmeister, Helga [1 ,2 ,3 ]
机构
[1] Med Univ Vienna, Ctr Biomed Res & Translat Surg, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
[2] Austrian Cluster Tissue Regenerat, Donaueschingenstr 13, A-1200 Vienna, Austria
[3] Ludwig Boltzmann Inst Cardiovasc Res, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
[4] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
[5] Vienna Univ Technol, Inst Appl Synthet Chem, Getreidemarkt 9-163, A-1060 Vienna, Austria
[6] Univ Vet Med, Dept Pathobiol, Vet Pl 1, A-1210 Vienna, Austria
[7] Ludwig Boltzmann Inst Traumatol, Donaueschingenstr 13, A-1200 Vienna, Austria
关键词
biodegradables; self-reinforcing; small diameter vascular grafts; tissue engineering; MECHANICAL-PROPERTIES; POLYURETHANE GRAFTS; INTIMAL HYPERPLASIA; COMPLIANCE MISMATCH; CURRENT STRATEGIES; PLATELET-ADHESION; LIPID DROPLETS; BLOOD-VESSELS; MANUFACTURE; EXPERIENCE;
D O I
10.1002/adhm.202300520
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Clinically available small-diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self-reinforcing TP(U-urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro-computed tomography (mu CT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto- and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self-reinforcing SDVGs may be promising candidates for clinical use in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering
    Chen, Jun
    Zhang, Di
    Wu, Lin-Ping
    Zhao, Ming
    POLYMERS, 2023, 15 (09)
  • [32] Bioengineered vascular grafts: improving vascular tissue engineering through scaffold design
    McClure, M. J.
    Wolfe, P. S.
    Rodriguez, I. A.
    Bowlin, G. L.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2011, 21 (03) : 211 - 227
  • [33] Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis
    Serbo, Janna V.
    Gerecht, Sharon
    STEM CELL RESEARCH & THERAPY, 2013, 4
  • [34] Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis
    Janna V Serbo
    Sharon Gerecht
    Stem Cell Research & Therapy, 4
  • [35] Fibrin gel scaffold optimization for tissue engineering vascular grafts
    Shaikh, F. M.
    Brien, T. P. O.
    Callanan, A.
    Kavanagh, E. G.
    Burke, P. E.
    Grace, P. A.
    Badylak, S. F.
    McGloughlin, T. M.
    TISSUE ENGINEERING, 2007, 13 (07): : 1696 - 1697
  • [36] Tissue engineering of recellularized small-diameter vascular grafts
    Borschel, GH
    Huang, YC
    Calve, S
    Arruda, EM
    Lynch, JB
    Dow, DE
    Kuzon, WM
    Dennis, RG
    Brown, DL
    TISSUE ENGINEERING, 2005, 11 (5-6): : 778 - 786
  • [37] Examining the differentiation in pre-service mathematics teachers' learning and studying approaches according to self-reinforcing, and persistence
    Bilgic, Emine Nur Unveren
    Danisman, Sahin
    INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION, 2023, 18 (04)
  • [38] New Approaches for In Situ Regeneration and Tissue Engineering of Bone
    Janicki, P.
    Richter, W.
    DEUTSCHE ZEITSCHRIFT FUR SPORTMEDIZIN, 2012, 63 (02): : 30 - 35
  • [39] Biodegradable Silica-Based Nanotheranostics for Precise MRI/NIR-II Fluorescence Imaging and Self-Reinforcing Antitumor Therapy
    Zheng, Ziliang
    Jia, Zhuo
    Qu, Chunrong
    Dai, Rong
    Qin, Yufei
    Rong, Shuo
    Liu, Yulong
    Cheng, Zhen
    Zhang, Ruiping
    SMALL, 2021, 17 (10)
  • [40] Vascular implants - new aspects for in situ tissue engineering
    Blume, Cornelia
    Kraus, Xenia
    Heene, Sebastian
    Loewner, Sebastian
    Stanislawski, Nils
    Cholewa, Fabian
    Blume, Holger
    ENGINEERING IN LIFE SCIENCES, 2022, 22 (3-4): : 344 - 360