Time-dependent contact mechanics

被引:18
|
作者
de Leon, Manuel [1 ]
Gaset, Jordi [2 ]
Gracia, Xavier [3 ]
Munoz-Lecanda, Miguel C. [3 ]
Rivas, Xavier [2 ]
机构
[1] Consejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
[2] Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, Spain
[3] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 04期
关键词
Contact structure; Time-dependent system; Hamiltonian system; Dissipation; Singular Lagrangian; Holonomic constraints; Jacobi structure; LAGRANGIAN SYSTEMS; GEOMETRIC ASPECTS;
D O I
10.1007/s00605-022-01767-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this setting we develop the Hamiltonian and Lagrangian formalisms, both in the regular and singular cases. In the singular case, we present a constraint algorithm aiming to find a submanifold where solutions exist. As a particular case we study contact systems with holonomic time-dependent constraints. Some regular and singular examples are analyzed, along with numerical simulations.
引用
收藏
页码:1149 / 1183
页数:35
相关论文
共 50 条
  • [42] Characterization of time-dependent anelastic microbeam bending mechanics
    Bergers, L. I. J. C.
    Hoefnagels, J. P. M.
    Geers, M. G. D.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (35)
  • [43] Symmetries, Conservation and Dissipation in Time-Dependent Contact Systems
    Gaset, Jordi
    Lopez-Gordon, Asier
    Rivas, Xavier
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2023, 71 (8-9):
  • [44] Time-dependent variational inequalities for viscoelastic contact problems
    Han, WM
    Sofonea, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 136 (1-2) : 369 - 387
  • [45] TIME-DEPENDENT TRANSIENT AND INTERMITTENT CONTACT ELECTRIFICATION OF POLYMERS
    FUHRMANN, J
    KURSCHNER, J
    JOURNAL OF ELECTROSTATICS, 1981, 10 (MAY) : 115 - 120
  • [46] Investigation of Time-Dependent Microscale Close Contact Melting
    Aljaghtham, Mutabe
    Premnath, Kannan
    Alsulami, Radi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 166
  • [47] Differentiable solver for time-dependent deformation problems with contact
    Huang, Zizhou
    Tozoni, Davi Colli
    Gjoka, Arvi
    Ferguson, Zachary
    Schneider, Teseo
    Panozzo, Daniele
    Zorin, Denis
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (03):
  • [48] The Time-Dependent Variational Principal in Quantum Mechanics and Its Application
    Ohrn, Yngve
    ADVANCES IN QUANTUM CHEMISTRY: LOWDIN VOLUME, 2017, 74 : 33 - 51
  • [49] Ideality criterion for unilateral constraints in time-dependent impulsive mechanics
    Pasquero, S
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (11)
  • [50] On the mapping of time-dependent densities onto potentials in quantum mechanics
    Baer, Roi
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (04):