机构:
Consejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, SpainConsejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
de Leon, Manuel
[1
]
Gaset, Jordi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, SpainConsejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
Gaset, Jordi
[2
]
Gracia, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cataluna, Dept Math, Barcelona, SpainConsejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
Gracia, Xavier
[3
]
Munoz-Lecanda, Miguel C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cataluna, Dept Math, Barcelona, SpainConsejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
Munoz-Lecanda, Miguel C.
[3
]
Rivas, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, SpainConsejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
Rivas, Xavier
[2
]
机构:
[1] Consejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
[2] Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, Spain
Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this setting we develop the Hamiltonian and Lagrangian formalisms, both in the regular and singular cases. In the singular case, we present a constraint algorithm aiming to find a submanifold where solutions exist. As a particular case we study contact systems with holonomic time-dependent constraints. Some regular and singular examples are analyzed, along with numerical simulations.
机构:
Univ Jaume 1, IMAC, E-12071 Castellon de La Plana, Spain
Univ Jaume 1, Dept Matemat, E-12071 Castellon de La Plana, SpainUniv Jaume 1, IMAC, E-12071 Castellon de La Plana, Spain