Time-dependent contact mechanics

被引:18
|
作者
de Leon, Manuel [1 ]
Gaset, Jordi [2 ]
Gracia, Xavier [3 ]
Munoz-Lecanda, Miguel C. [3 ]
Rivas, Xavier [2 ]
机构
[1] Consejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
[2] Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, Spain
[3] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 04期
关键词
Contact structure; Time-dependent system; Hamiltonian system; Dissipation; Singular Lagrangian; Holonomic constraints; Jacobi structure; LAGRANGIAN SYSTEMS; GEOMETRIC ASPECTS;
D O I
10.1007/s00605-022-01767-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this setting we develop the Hamiltonian and Lagrangian formalisms, both in the regular and singular cases. In the singular case, we present a constraint algorithm aiming to find a submanifold where solutions exist. As a particular case we study contact systems with holonomic time-dependent constraints. Some regular and singular examples are analyzed, along with numerical simulations.
引用
收藏
页码:1149 / 1183
页数:35
相关论文
共 50 条
  • [21] Introduction to quantum mechanics - A time-dependent perspective
    Gray, Stephen
    SCIENCE, 2008, 319 (5860) : 161 - 161
  • [22] On time-dependent perturbation theory in matrix mechanics and time averaging
    Casas, Fernando
    EUROPEAN JOURNAL OF PHYSICS, 2015, 36 (05)
  • [23] Time-Dependent Electrical Contact Resistance at the Nanoscale
    Mohammad R. Vazirisereshk
    Saima A. Sumaiya
    Rimei Chen
    Mehmet Z. Baykara
    Ashlie Martini
    Tribology Letters, 2021, 69
  • [24] Time-dependent contact structures in Goguen categories
    Winter, Michael
    RELATIONAL METHODS IN COMPUTER SCIENCE, 2005, 2006, 3929 : 249 - 262
  • [25] Time-Dependent Electrical Contact Resistance at the Nanoscale
    Vazirisereshk, Mohammad R.
    Sumaiya, Saima A.
    Chen, Rimei
    Baykara, Mehmet Z.
    Martini, Ashlie
    TRIBOLOGY LETTERS, 2021, 69 (02)
  • [26] Covariant geometric quantization of nonrelativistic time-dependent mechanics
    Giachetta, G
    Mangiarotti, L
    Sardanashvily, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) : 56 - 68
  • [27] Skinner-Rusk approach to time-dependent mechanics
    Cortés, J
    Martínez, S
    Cantrijn, F
    PHYSICS LETTERS A, 2002, 300 (2-3) : 250 - 258
  • [28] Time-dependent linear Hamiltonian systems and quantum mechanics
    Rezende, J
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (02) : 117 - 127
  • [29] NOETHER SYMMETRIES AND INTEGRABILITY IN TIME-DEPENDENT HAMILTONIAN MECHANICS
    Jovanovic, Bozidar
    THEORETICAL AND APPLIED MECHANICS, 2016, 43 (02) : 255 - 273
  • [30] Time-dependent PT-symmetric quantum mechanics
    Gong, Jiangbin
    Wang, Qing-hai
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (48)