Time-dependent contact mechanics

被引:18
|
作者
de Leon, Manuel [1 ]
Gaset, Jordi [2 ]
Gracia, Xavier [3 ]
Munoz-Lecanda, Miguel C. [3 ]
Rivas, Xavier [2 ]
机构
[1] Consejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
[2] Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, Spain
[3] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 04期
关键词
Contact structure; Time-dependent system; Hamiltonian system; Dissipation; Singular Lagrangian; Holonomic constraints; Jacobi structure; LAGRANGIAN SYSTEMS; GEOMETRIC ASPECTS;
D O I
10.1007/s00605-022-01767-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this setting we develop the Hamiltonian and Lagrangian formalisms, both in the regular and singular cases. In the singular case, we present a constraint algorithm aiming to find a submanifold where solutions exist. As a particular case we study contact systems with holonomic time-dependent constraints. Some regular and singular examples are analyzed, along with numerical simulations.
引用
收藏
页码:1149 / 1183
页数:35
相关论文
共 50 条