Ideality criterion for unilateral constraints in time-dependent impulsive mechanics

被引:29
|
作者
Pasquero, S [1 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
关键词
D O I
10.1063/1.2121247
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a new geometric framework based on the concepts of left and right jet-bundles of a classical space-time V in order to analyze the impulsive behavior of a unilateral constraint S. The setup allows deep insights into how one can choose an ideality criterion for the constraint S when the hypothesis of conservation of kinetic energy is assumed. We show that the conservation of kinetic energy alone univocally determines the impulsive reaction when the codimension of S is 1, and that it leaves the impulsive reaction partially undetermined when the codimension of S is greater than 1. If the codimension of S is greater than 1, we prove that an additional minimality requirement determines a physically meaningful constitutive characterization of S. We show that both the Newton-like and the Poisson-like approaches to the description of the reactive impulse are equivalent, in the sense that both give the same results about the ideality criterion. Moreover, we prove that the same results hold using the classical approach based on reflection operators, possible only in case of codimension 1. We present also several physically meaningful examples. (c) 2005 American Institute of Physics.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the simultaneous presence of unilateral and kinetic constraints in time-dependent impulsive mechanics
    Pasquero, Stefano
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)
  • [2] Nonholonomic constraints in time-dependent mechanics
    Giachetta, G
    Mangiarotti, L
    Sardanashvily, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1376 - 1390
  • [3] Constraints in Hamiltonian time-dependent mechanics
    Mangiarotti, L
    Sardanashvily, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2858 - 2876
  • [4] PROBLEM OF EVOLUTION WITH TIME-DEPENDENT UNILATERAL CONSTRAINTS
    BREZIS, H
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (04): : 310 - &
  • [5] Nonideal unilateral constraints in impulsive mechanics: A geometric approach
    Pasquero, Stefano
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
  • [6] A geometric framework for time-dependent mechanical systems with unilateral constraints
    Zhang, Y
    Mei, FX
    [J]. CHINESE PHYSICS, 2006, 15 (01): : 13 - 18
  • [7] Time-dependent semiclassical mechanics
    Sepulveda, MA
    Grossmann, F
    [J]. ADVANCES IN CHEMICAL PHYSICS, VOL 96, 1996, 96 : 191 - 304
  • [8] Hamiltonian time-dependent mechanics
    Sardanashvily, GA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) : 2714 - 2729
  • [9] Time-dependent contact mechanics
    Manuel de León
    Jordi Gaset
    Xavier Gràcia
    Miguel C. Muñoz-Lecanda
    Xavier Rivas
    [J]. Monatshefte für Mathematik, 2023, 201 : 1149 - 1183
  • [10] Time-dependent contact mechanics
    de Leon, Manuel
    Gaset, Jordi
    Gracia, Xavier
    Munoz-Lecanda, Miguel C.
    Rivas, Xavier
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 201 (04): : 1149 - 1183