On the simultaneous presence of unilateral and kinetic constraints in time-dependent impulsive mechanics

被引:22
|
作者
Pasquero, Stefano [1 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
关键词
D O I
10.1063/1.2234728
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The simultaneous presence of unilateral and kinetic constraints acting on a mechanical system with a finite number of degrees of freedom is framed in the geometric context of left and right jet-bundles of the classical space-time bundle of the system. The survey gives three main cases and several subcases, some of which are mathematically correct but physically meaningless. The existence of at least one frame of reference for which the whole set of constraints can be at rest is the criterion selecting the physically relevant systems. For these systems, the conservation of kinetic energy, possibly together with a standard Gauss's requirement on the impulsive reaction, is shown to give a well posed criterion of ideality of the constraints. The application of the criterion to several examples is presented and the corresponding results are critically analyzed. (c) 2006 American Institute of Physics.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Ideality criterion for unilateral constraints in time-dependent impulsive mechanics
    Pasquero, S
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (11)
  • [2] Nonholonomic constraints in time-dependent mechanics
    Giachetta, G
    Mangiarotti, L
    Sardanashvily, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1376 - 1390
  • [3] Constraints in Hamiltonian time-dependent mechanics
    Mangiarotti, L
    Sardanashvily, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2858 - 2876
  • [4] PROBLEM OF EVOLUTION WITH TIME-DEPENDENT UNILATERAL CONSTRAINTS
    BREZIS, H
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (04): : 310 - &
  • [5] Nonideal unilateral constraints in impulsive mechanics: A geometric approach
    Pasquero, Stefano
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
  • [6] A geometric framework for time-dependent mechanical systems with unilateral constraints
    Zhang, Y
    Mei, FX
    [J]. CHINESE PHYSICS, 2006, 15 (01): : 13 - 18
  • [7] Time-dependent semiclassical mechanics
    Sepulveda, MA
    Grossmann, F
    [J]. ADVANCES IN CHEMICAL PHYSICS, VOL 96, 1996, 96 : 191 - 304
  • [8] Hamiltonian time-dependent mechanics
    Sardanashvily, GA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) : 2714 - 2729
  • [9] Time-dependent contact mechanics
    Manuel de León
    Jordi Gaset
    Xavier Gràcia
    Miguel C. Muñoz-Lecanda
    Xavier Rivas
    [J]. Monatshefte für Mathematik, 2023, 201 : 1149 - 1183
  • [10] Time-dependent contact mechanics
    de Leon, Manuel
    Gaset, Jordi
    Gracia, Xavier
    Munoz-Lecanda, Miguel C.
    Rivas, Xavier
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 201 (04): : 1149 - 1183