Time-dependent contact mechanics

被引:18
|
作者
de Leon, Manuel [1 ]
Gaset, Jordi [2 ]
Gracia, Xavier [3 ]
Munoz-Lecanda, Miguel C. [3 ]
Rivas, Xavier [2 ]
机构
[1] Consejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
[2] Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, Spain
[3] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 04期
关键词
Contact structure; Time-dependent system; Hamiltonian system; Dissipation; Singular Lagrangian; Holonomic constraints; Jacobi structure; LAGRANGIAN SYSTEMS; GEOMETRIC ASPECTS;
D O I
10.1007/s00605-022-01767-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this setting we develop the Hamiltonian and Lagrangian formalisms, both in the regular and singular cases. In the singular case, we present a constraint algorithm aiming to find a submanifold where solutions exist. As a particular case we study contact systems with holonomic time-dependent constraints. Some regular and singular examples are analyzed, along with numerical simulations.
引用
收藏
页码:1149 / 1183
页数:35
相关论文
共 50 条
  • [1] Time-dependent contact mechanics
    Manuel de León
    Jordi Gaset
    Xavier Gràcia
    Miguel C. Muñoz-Lecanda
    Xavier Rivas
    Monatshefte für Mathematik, 2023, 201 : 1149 - 1183
  • [2] TIME-DEPENDENT CONTACT PROBLEMS IN RIGID BODY MECHANICS
    LOTSTEDT, P
    MATHEMATICAL PROGRAMMING STUDY, 1982, 17 (APR): : 103 - 110
  • [3] Time-dependent inclusions and sweeping processes in contact mechanics
    Adly, Samir
    Sofonea, Mircea
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [4] Time-dependent inclusions and sweeping processes in contact mechanics
    Samir Adly
    Mircea Sofonea
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [5] Hamiltonian time-dependent mechanics
    Sardanashvily, G. A.
    Journal of Mathematical Physics, 39 (05):
  • [6] Time-dependent semiclassical mechanics
    Sepulveda, MA
    Grossmann, F
    ADVANCES IN CHEMICAL PHYSICS, VOL 96, 1996, 96 : 191 - 304
  • [7] Hamiltonian time-dependent mechanics
    Sardanashvily, GA
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) : 2714 - 2729
  • [8] THE STATISTICAL MECHANICS OF TIME-DEPENDENT PHENOMENA
    MORI, H
    PROGRESS OF THEORETICAL PHYSICS, 1953, 9 (04): : 470 - 472
  • [9] TOPICS IN TIME-DEPENDENT STATISTICAL MECHANICS
    BERNE, BJ
    FORSTER, D
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1971, 22 : 563 - &
  • [10] Nonholonomic constraints in time-dependent mechanics
    Giachetta, G
    Mangiarotti, L
    Sardanashvily, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1376 - 1390