Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis

被引:6
|
作者
Gilbert, Alexander D. [1 ]
Scheichl, Robert [2 ,3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Heidelberg Univ, Inst Appl Math & Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
stochastic eigenvalue problems; quasi-Monte Carlo; uncertainty quantification; multilevel Monte Carlo; PARTIAL-DIFFERENTIAL-EQUATIONS; PETROV-GALERKIN DISCRETIZATION; BY-COMPONENT CONSTRUCTION; RANK-1 LATTICE RULES; APPROXIMATION; EFFICIENT; ALGORITHMS;
D O I
10.1093/imanum/drad011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic partial differential equation (PDE) eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretizations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. Under stronger smoothness assumptions on the parametric dependence, our analysis also extends to multilevel higher-order quasi-Monte Carlo rules. An accompanying paper (Gilbert, A. D. & Scheichl, R. (2023) Multilevel quasi-Monte Carlo methods for random elliptic eigenvalue problems II: efficient algorithms and numerical results. IMA J. Numer. Anal.) focusses on practical extensions of the MLQMC algorithm to improve efficiency and presents numerical results.
引用
收藏
页码:466 / 503
页数:38
相关论文
共 50 条
  • [41] Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients
    Ali, Ahmad Ahmad
    Ullmann, Elisabeth
    Hinze, Michael
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 466 - 492
  • [42] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    A. L. Teckentrup
    R. Scheichl
    M. B. Giles
    E. Ullmann
    Numerische Mathematik, 2013, 125 : 569 - 600
  • [43] The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension
    Hickernell, FJ
    Wang, XQ
    MATHEMATICS OF COMPUTATION, 2002, 71 (240) : 1641 - 1661
  • [44] Quasi-Monte Carlo method for structural reliability analysis
    Dai, Hongzhe
    Wang, Wei
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2009, 30 (04): : 666 - 671
  • [45] On global sensitivity analysis of quasi-Monte Carlo algorithms
    Sobol, I. M.
    Kucherenko, S. S.
    MONTE CARLO METHODS AND APPLICATIONS, 2005, 11 (01): : 83 - 92
  • [46] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Kuo, Frances Y.
    Schwab, Christoph
    Sloan, Ian H.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 411 - 449
  • [47] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Frances Y. Kuo
    Christoph Schwab
    Ian H. Sloan
    Foundations of Computational Mathematics, 2015, 15 : 411 - 449
  • [48] Multilevel Quasi-Monte Carlo Uncertainty Quantification for Advection-Diffusion-Reaction
    Herrmann, Lukas
    Schwab, Christoph
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2018, 2020, 324 : 31 - 67
  • [49] Adaptive random search in quasi-Monte Carlo methods for global optimization
    Lei, GY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (6-7) : 747 - 754
  • [50] Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs
    Longo, Marcello
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)