Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis

被引:6
|
作者
Gilbert, Alexander D. [1 ]
Scheichl, Robert [2 ,3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Heidelberg Univ, Inst Appl Math & Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
stochastic eigenvalue problems; quasi-Monte Carlo; uncertainty quantification; multilevel Monte Carlo; PARTIAL-DIFFERENTIAL-EQUATIONS; PETROV-GALERKIN DISCRETIZATION; BY-COMPONENT CONSTRUCTION; RANK-1 LATTICE RULES; APPROXIMATION; EFFICIENT; ALGORITHMS;
D O I
10.1093/imanum/drad011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic partial differential equation (PDE) eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretizations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. Under stronger smoothness assumptions on the parametric dependence, our analysis also extends to multilevel higher-order quasi-Monte Carlo rules. An accompanying paper (Gilbert, A. D. & Scheichl, R. (2023) Multilevel quasi-Monte Carlo methods for random elliptic eigenvalue problems II: efficient algorithms and numerical results. IMA J. Numer. Anal.) focusses on practical extensions of the MLQMC algorithm to improve efficiency and presents numerical results.
引用
收藏
页码:466 / 503
页数:38
相关论文
共 50 条
  • [31] QUASI-MONTE CARLO METHODS AND PSEUDO-RANDOM NUMBERS
    NIEDERREITER, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) : 957 - 1041
  • [32] Efficient Quasi-Monte Carlo Sampling for Quantum Random Walks
    Atanassov, E.
    Durchova, M.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302
  • [33] QUASI-MONTE CARLO FINITE ELEMENT METHODS FOR A CLASS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS
    Kuo, Frances Y.
    Schwab, Christoph
    Sloan, Ian H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) : 3351 - 3374
  • [34] Multilevel higher-order quasi-Monte Carlo Bayesian estimation
    Dick, Josef
    Gantner, Robert N.
    Le Gia, Quoc T.
    Schwab, Christoph
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (05): : 953 - 995
  • [35] Quasi-Monte Carlo algorithms for unbounded, weighted integration problems
    Hartinger, E
    Kainhofer, RF
    Tichy, RF
    JOURNAL OF COMPLEXITY, 2004, 20 (05) : 654 - 668
  • [36] FINITE ELEMENT ERROR ANALYSIS OF ELLIPTIC PDES WITH RANDOM COEFFICIENTS AND ITS APPLICATION TO MULTILEVEL MONTE CARLO METHODS
    Charrier, J.
    Scheichl, R.
    Teckentrup, A. L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 322 - 352
  • [37] Quasi-Monte Carlo methods for some linear algebra problems
    Karaivanova, A
    Mascagni, M
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1754 - 1757
  • [38] Error bounds for quasi-Monte Carlo integration with uniform point sets
    Niederreiter, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (02) : 283 - 292
  • [39] Quasi-Monte Carlo Finite Element Analysis for Wave Propagation in Heterogeneous Random Media
    Ganesh, M.
    Kuo, Frances Y.
    Sloan, Ian H.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01): : 106 - 134
  • [40] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    Teckentrup, A. L.
    Scheichl, R.
    Giles, M. B.
    Ullmann, E.
    NUMERISCHE MATHEMATIK, 2013, 125 (03) : 569 - 600