Quasi-Monte Carlo algorithms for unbounded, weighted integration problems

被引:15
|
作者
Hartinger, E [1 ]
Kainhofer, RF [1 ]
Tichy, RF [1 ]
机构
[1] Graz Univ Technol, Dept Math, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
quasi-Monte Carlo integration; weighted integration; non-uniformly distributed low-discrepancy sequences;
D O I
10.1016/j.jco.2003.11.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article we investigate quasi-Monte Carlo (QMC) methods for multidimensional improper integrals with respect to a measure other than the uniform distribution. Additionally, the integrand is allowed to be unbounded at the lower boundary of the integration domain. We establish convergence of the QMC estimator to the value of the improper integral under conditions involving both the integrand and the sequence used. Furthermore, we suggest a modification of an approach proposed by Hlawka and Muck for the creation of low-discrepancy sequences with regard to a given density, which are suited for singular integrands. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:654 / 668
页数:15
相关论文
共 50 条
  • [1] QUASI-MONTE CARLO INTEGRATION
    MOROKOFF, WJ
    CAFLISCH, RE
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) : 218 - 230
  • [2] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [3] Error estimates in Monte Carlo and Quasi-Monte Carlo integration
    Lazopouls, A
    [J]. ACTA PHYSICA POLONICA B, 2004, 35 (11): : 2617 - 2632
  • [4] Strong tractability of multivariate integration using quasi-Monte Carlo algorithms
    Wang, XQ
    [J]. MATHEMATICS OF COMPUTATION, 2003, 72 (242) : 823 - 838
  • [5] Quasi-Monte Carlo Integration on the Unit Disk
    Ghose, Sayan
    Pohlman, Lawrence
    [J]. 2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 329 - 333
  • [6] Discrepancy Theory and Quasi-Monte Carlo Integration
    Dick, Josef
    Pillichshammer, Friedrich
    [J]. PANORAMA OF DISCREPANCY THEORY, 2014, 2107 : 539 - 619
  • [7] On the Parallel Implementation of Quasi-Monte Carlo Algorithms
    Atanassov, E.
    Gurov, T.
    Ivanovska, S.
    Karaivanova, A.
    Simchev, T.
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 258 - 265
  • [8] Quasi-Monte Carlo integration over Rd
    Mathé, P
    Wei, G
    [J]. MATHEMATICS OF COMPUTATION, 2004, 73 (246) : 827 - 841
  • [9] Control Functionals for Quasi-Monte Carlo Integration
    Oates, Chris J.
    Girolami, Mark
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 56 - 65
  • [10] The effective dimension and quasi-Monte Carlo integration
    Wang, XQ
    Fang, KT
    [J]. JOURNAL OF COMPLEXITY, 2003, 19 (02) : 101 - 124