Quasi-Monte Carlo algorithms for unbounded, weighted integration problems

被引:15
|
作者
Hartinger, E [1 ]
Kainhofer, RF [1 ]
Tichy, RF [1 ]
机构
[1] Graz Univ Technol, Dept Math, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
quasi-Monte Carlo integration; weighted integration; non-uniformly distributed low-discrepancy sequences;
D O I
10.1016/j.jco.2003.11.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article we investigate quasi-Monte Carlo (QMC) methods for multidimensional improper integrals with respect to a measure other than the uniform distribution. Additionally, the integrand is allowed to be unbounded at the lower boundary of the integration domain. We establish convergence of the QMC estimator to the value of the improper integral under conditions involving both the integrand and the sequence used. Furthermore, we suggest a modification of an approach proposed by Hlawka and Muck for the creation of low-discrepancy sequences with regard to a given density, which are suited for singular integrands. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:654 / 668
页数:15
相关论文
共 50 条
  • [41] Quasi-Monte Carlo integration using digital nets with antithetics
    Goda, Takashi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 304 : 26 - 42
  • [42] Density Estimation by Monte Carlo and Quasi-Monte Carlo
    L'Ecuyer, Pierre
    Puchhammer, Florian
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 3 - 21
  • [43] Monte Carlo and quasi-Monte Carlo algorithms for the Barker-Ferry equation with low complexity
    Gurov, TV
    Witlock, PA
    Dimov, IT
    [J]. NUMERICAL METHODS AND APPLICATIONS, 2003, 2542 : 108 - 116
  • [44] On Monte Carlo and Quasi-Monte Carlo for Matrix Computations
    Alexandrov, Vassil
    Davila, Diego
    Esquivel-Flores, Oscar
    Karaivanova, Aneta
    Gurov, Todor
    Atanassov, Emanouil
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 249 - 257
  • [45] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [46] Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
    Kleiss, Ronald
    Lazopoulos, Achilleas
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (02) : 93 - 115
  • [47] MULTILEVEL QUASI-MONTE CARLO METHODS FOR LOGNORMAL DIFFUSION PROBLEMS
    Kuo, Frances Y.
    Scheichl, Robert
    Schwab, Christoph
    Sloan, Ian H.
    Ullmann, Elisabeth
    [J]. MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2827 - 2860
  • [48] Quasi-Monte Carlo methods for some linear algebra problems
    Karaivanova, A
    Mascagni, M
    [J]. PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1754 - 1757
  • [49] Sensitivity Analysis of an Air Pollution Model by Using Quasi-Monte Carlo Algorithms for Multidimensional Numerical Integration
    Ostromsky, Tzvetan
    Dimov, Ivan
    Todorov, Venelin
    Zlatev, Zahari
    [J]. NUMERICAL METHODS AND APPLICATIONS, NMA 2018, 2019, 11189 : 281 - 289
  • [50] MATHEMATICAL BASIS OF MONTE CARLO AND QUASI-MONTE CARLO METHODS
    ZAREMBA, SK
    [J]. SIAM REVIEW, 1968, 10 (03) : 303 - &