Sensitivity Analysis of an Air Pollution Model by Using Quasi-Monte Carlo Algorithms for Multidimensional Numerical Integration

被引:0
|
作者
Ostromsky, Tzvetan [1 ]
Dimov, Ivan [1 ]
Todorov, Venelin [1 ,2 ]
Zlatev, Zahari [3 ]
机构
[1] BAS, IICT, Dept Parallel Algorithms, Acad G Bonchev 25 A, Sofia 1113, Bulgaria
[2] BAS, IMI, Dept Informat Modelling, Acad Georgi Bonchev St, Sofia 1113, Bulgaria
[3] Aarhus Univ, Natl Ctr Environm & Energy, Frederiksborgvej 399,POB 358, DK-4000 Roskilde, Denmark
关键词
D O I
10.1007/978-3-030-10692-8_31
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sensitivity analysis is a powerful tool for studying and improving the reliability of large and complicated mathematical models. Air pollution and meteorological models are in front places among the examples of such models, with a lot of natural uncertainties in their input data sets and parameters. We present here some results of our global sensitivity study of the Unified Danish Eulerian Model (UNI-DEM). One of the most attractive features of UNI-DEM is its advanced chemical scheme - the Condensed CBM IV, which consider in detail a large number of chemical species and numerous reactions between them. Four efficient stochastic algorithms (Sobol QMC, Halton QMC, Fibonacci lattice rule and Latin hypercube sampling) have been used and compared by their accuracy in studying the sensitivity of ammonia and ozone concentration results with respect to the emission levels and some chemical reactions rates. The numerical experiments show that the stochastic algorithms under consideration are quite efficient for this purpose, especially for evaluating the contribution of small by value sensitivity indices.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 50 条
  • [1] On global sensitivity analysis of quasi-Monte Carlo algorithms
    Sobol, I. M.
    Kucherenko, S. S.
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2005, 11 (01): : 83 - 92
  • [2] Quasi-Monte Carlo integration on the grid for sensitivity studies
    Atanassov, Emanouil
    Karaivanova, Aneta
    Gurov, Todor
    Ivanovska, Sofiya
    Durchova, Mariya
    Dimitrov, Dimitar Sl
    [J]. EARTH SCIENCE INFORMATICS, 2010, 3 (04) : 289 - 296
  • [3] Strong tractability of multivariate integration using quasi-Monte Carlo algorithms
    Wang, XQ
    [J]. MATHEMATICS OF COMPUTATION, 2003, 72 (242) : 823 - 838
  • [4] Quasi-Monte Carlo integration on the grid for sensitivity studies
    Emanouil Atanassov
    Aneta Karaivanova
    Todor Gurov
    Sofiya Ivanovska
    Mariya Durchova
    Dimitar Sl. Dimitrov
    [J]. Earth Science Informatics, 2010, 3 : 289 - 296
  • [5] QUASI-MONTE CARLO INTEGRATION
    MOROKOFF, WJ
    CAFLISCH, RE
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) : 218 - 230
  • [6] Quasi-Monte Carlo algorithms for unbounded, weighted integration problems
    Hartinger, E
    Kainhofer, RF
    Tichy, RF
    [J]. JOURNAL OF COMPLEXITY, 2004, 20 (05) : 654 - 668
  • [7] Error estimates in Monte Carlo and Quasi-Monte Carlo integration
    Lazopouls, A
    [J]. ACTA PHYSICA POLONICA B, 2004, 35 (11): : 2617 - 2632
  • [8] Multidimensional quasi-Monte Carlo Malliavin Greeks
    Cufaro Petroni N.
    Sabino P.
    [J]. Decisions in Economics and Finance, 2013, 36 (2) : 199 - 224
  • [9] IMPROVED LOW-DISCREPANCY SEQUENCE FOR MULTIDIMENSIONAL QUASI-MONTE CARLO INTEGRATION
    BRAATEN, E
    WELLER, G
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 33 (02) : 249 - 258
  • [10] Quasi-Monte Carlo rules for numerical integration over the unit sphere
    Brauchart, Johann S.
    Dick, Josef
    [J]. NUMERISCHE MATHEMATIK, 2012, 121 (03) : 473 - 502