Quasi-Monte Carlo integration on the grid for sensitivity studies

被引:0
|
作者
Emanouil Atanassov
Aneta Karaivanova
Todor Gurov
Sofiya Ivanovska
Mariya Durchova
Dimitar Sl. Dimitrov
机构
[1] Bulgarian Academy of Sciences,Department of GRID Technologies and Applications, Institute for Parallel Processing
来源
关键词
Grid computing; Quasi-Monte Carlo algorithms; Sensitivity study;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present error and performance analysis of quasi-Monte Carlo algorithms for solving multidimensional integrals (up to 100 dimensions) on the grid using MPI. We take into account the fact that the Grid is a potentially heterogeneous computing environment, where the user does not know the specifics of the target architecture. Therefore parallel algorithms should be able to adapt to this heterogeneity, providing automated load-balancing. Monte Carlo algorithms can be tailored to such environments, provided parallel pseudorandom number generators are available. The use of quasi-Monte Carlo algorithms poses more difficulties. In both cases the efficient implementation of the algorithms depends on the functionality of the corresponding packages for generating pseudorandom or quasirandom numbers. We propose efficient parallel implementation of the Sobol sequence for a grid environment and we demonstrate numerical experiments on a heterogeneous grid. To achieve high parallel efficiency we use a newly developed special grid service called Job Track Service which provides efficient management of available computing resources through reservations.
引用
收藏
页码:289 / 296
页数:7
相关论文
共 50 条
  • [1] Quasi-Monte Carlo integration on the grid for sensitivity studies
    Atanassov, Emanouil
    Karaivanova, Aneta
    Gurov, Todor
    Ivanovska, Sofiya
    Durchova, Mariya
    Dimitrov, Dimitar Sl
    [J]. EARTH SCIENCE INFORMATICS, 2010, 3 (04) : 289 - 296
  • [2] QUASI-MONTE CARLO INTEGRATION
    MOROKOFF, WJ
    CAFLISCH, RE
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) : 218 - 230
  • [3] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [4] Error estimates in Monte Carlo and Quasi-Monte Carlo integration
    Lazopouls, A
    [J]. ACTA PHYSICA POLONICA B, 2004, 35 (11): : 2617 - 2632
  • [5] Quasi-Monte Carlo Integration on the Unit Disk
    Ghose, Sayan
    Pohlman, Lawrence
    [J]. 2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 329 - 333
  • [6] Discrepancy Theory and Quasi-Monte Carlo Integration
    Dick, Josef
    Pillichshammer, Friedrich
    [J]. PANORAMA OF DISCREPANCY THEORY, 2014, 2107 : 539 - 619
  • [7] Quasi-Monte Carlo integration over Rd
    Mathé, P
    Wei, G
    [J]. MATHEMATICS OF COMPUTATION, 2004, 73 (246) : 827 - 841
  • [8] Control Functionals for Quasi-Monte Carlo Integration
    Oates, Chris J.
    Girolami, Mark
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 56 - 65
  • [9] The effective dimension and quasi-Monte Carlo integration
    Wang, XQ
    Fang, KT
    [J]. JOURNAL OF COMPLEXITY, 2003, 19 (02) : 101 - 124
  • [10] A UNIVERSAL MEDIAN QUASI-MONTE CARLO INTEGRATION
    Goda, Takashi
    Suzuki, Kosuke
    Matsumoto, Makoto
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (01) : 533 - 566