Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis

被引:6
|
作者
Gilbert, Alexander D. [1 ]
Scheichl, Robert [2 ,3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Heidelberg Univ, Inst Appl Math & Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
stochastic eigenvalue problems; quasi-Monte Carlo; uncertainty quantification; multilevel Monte Carlo; PARTIAL-DIFFERENTIAL-EQUATIONS; PETROV-GALERKIN DISCRETIZATION; BY-COMPONENT CONSTRUCTION; RANK-1 LATTICE RULES; APPROXIMATION; EFFICIENT; ALGORITHMS;
D O I
10.1093/imanum/drad011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic partial differential equation (PDE) eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretizations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. Under stronger smoothness assumptions on the parametric dependence, our analysis also extends to multilevel higher-order quasi-Monte Carlo rules. An accompanying paper (Gilbert, A. D. & Scheichl, R. (2023) Multilevel quasi-Monte Carlo methods for random elliptic eigenvalue problems II: efficient algorithms and numerical results. IMA J. Numer. Anal.) focusses on practical extensions of the MLQMC algorithm to improve efficiency and presents numerical results.
引用
收藏
页码:466 / 503
页数:38
相关论文
共 50 条
  • [21] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    Numerische Mathematik, 2015, 131 : 329 - 368
  • [22] Error reduction techniques in quasi-Monte Carlo integration
    Ökten, G
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (7-8) : 61 - 69
  • [23] Error bounds for quasi-Monte Carlo integration with nets
    Lecot, C
    MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 179 - 187
  • [24] QUASI-MONTE CARLO BAYESIAN ESTIMATION UNDER BESOV PRIORS IN ELLIPTIC INVERSE PROBLEMS
    Herrmann, Lukas
    Keller, Magdalena
    Schwab, Christoph
    MATHEMATICS OF COMPUTATION, 2021, 90 (330) : 1831 - 1860
  • [26] Domain decomposition solution of elliptic boundary-value problems via Monte Carlo and quasi-Monte Carlo methods
    Acebrón, JA
    Busico, MP
    Lanucara, P
    Spigler, R
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02): : 440 - 457
  • [27] ON THE ERROR RATE OF IMPORTANCE SAMPLING WITH RANDOMIZED QUASI-MONTE CARLO*
    He, Zhijian
    Zheng, Zhan
    Wang, Xiaoqun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) : 515 - 538
  • [28] A practical approach to the error estimation of quasi-Monte Carlo integrations
    Morohosi, H
    Fushimi, H
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 377 - 390
  • [29] Empirically Estimating Error of Integration by Quasi-Monte Carlo Method
    Antonov, A. A.
    Ermakov, S. M.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2014, 47 (01) : 1 - 8
  • [30] ON THE ERROR RATE OF CONDITIONAL QUASI-MONTE CARLO FOR DISCONTINUOUS FUNCTIONS
    He, Zhijian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 854 - 874