Panoptic Segmentation with Convex Object Representation

被引:0
|
作者
Yao, Zhicheng [1 ,2 ]
Wang, Sa [1 ,2 ]
Zhu, Jinbin [1 ]
Bao, Yungang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd Zhongguancun, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, 1 Yanqihu East Rd, Beijing 101408, Peoples R China
来源
COMPUTER JOURNAL | 2023年 / 67卷 / 06期
基金
中国国家自然科学基金;
关键词
deep learning; computer vision; image segmentation; panoptic segmentation; instance representation;
D O I
10.1093/comjnl/bxad119
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The accurate representation of objects holds pivotal significance in the realm of panoptic segmentation. Presently, prevalent object representation methodologies, including box-based, keypoint-based and query-based techniques, encounter a challenge known as the 'representation confusion' issue in specific scenarios, often resulting in the mislabeling of instances. In response, this paper introduces Convex Object Representation (COR), a straightforward yet highly effective approach to address this problem. COR leverages a CNN-based Euclidean Distance Transform to convert the target instance into a convex heatmap. Simultaneously, it offers a parallel embedding method for encoding the object. Subsequently, COR characterizes objects based on the distinctive embedding vectors of their convex vertices. This paper seamlessly integrates COR into a state-of-the-art query-based panoptic segmentation framework. Experimental findings validate that COR successfully mitigates the representation confusion predicament, enhancing segmentation accuracy. The COR-augmented methods exhibit notable improvements of +1.3 and +0.7 points in PQ on the Cityscapes validation and MS COCO panoptic 2017 validation datasets, respectively.
引用
收藏
页码:2009 / 2019
页数:11
相关论文
共 50 条
  • [1] Slot-VPS: Object-centric Representation Learning for Video Panoptic Segmentation
    Zhou, Yi
    Zhang, Hui
    Lee, Hana
    Sun, Shuyang
    Li, Pingjun
    Zhu, Yangguang
    Yoo, ByungIn
    Qi, Xiaojuan
    Han, Jae-Joon
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3083 - 3093
  • [2] Video Object Segmentation in Panoptic Wild Scenes
    Xu, Yuanyou
    Yang, Zongxin
    Yang, Yi
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1604 - 1612
  • [3] Panoptic Segmentation
    Kirillov, Alexander
    He, Kaiming
    Girshick, Ross
    Rother, Carsten
    Dollar, Piotr
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9396 - 9405
  • [4] Panoptic Segmentation Forecasting
    Graber, Colin
    Tsai, Grace
    Firman, Michael
    Brostow, Gabriel
    Schwing, Alexander
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12512 - 12521
  • [5] Panoptic Segmentation Forecasting
    Graber, Colin
    Tsai, Grace
    Firman, Michael
    Brostow, Gabriel
    Schwing, Alexander
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2279 - 2288
  • [6] Amodal Panoptic Segmentation
    Mohan, Rohit
    Valada, Abhinav
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 20991 - 21000
  • [7] Panoptic Neural Fields: A Semantic Object-Aware Neural Scene Representation
    Kundu, Abhijit
    Genova, Kyle
    Yin, Xiaoqi
    Fathi, Alireza
    Pantofaru, Caroline
    Guibas, Leonidas
    Tagliasacchi, Andrea
    Dellaert, Frank
    Funkhouser, Thomas
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12861 - 12871
  • [8] Object Segmentation using Parametric Representation
    Rhee, Hochang
    Koo, Hyung Il
    Cho, Nam Ik
    [J]. PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 770 - 778
  • [9] Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
    Li, Zhiqi
    Wang, Wenhai
    Xie, Enze
    Yu, Zhiding
    Anandkumar, Anima
    Alvarez, Jose M.
    Luo, Ping
    Lu, Tong
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1270 - 1279
  • [10] Context-Aware Relative Object Queries to Unify Video Instance and Panoptic Segmentation
    Choudhuri, Anwesa
    Chowdhary, Girish
    Schwing, Alexander G.
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 6377 - 6386