Panoptic Segmentation with Convex Object Representation

被引:0
|
作者
Yao, Zhicheng [1 ,2 ]
Wang, Sa [1 ,2 ]
Zhu, Jinbin [1 ]
Bao, Yungang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd Zhongguancun, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, 1 Yanqihu East Rd, Beijing 101408, Peoples R China
来源
COMPUTER JOURNAL | 2023年 / 67卷 / 06期
基金
中国国家自然科学基金;
关键词
deep learning; computer vision; image segmentation; panoptic segmentation; instance representation;
D O I
10.1093/comjnl/bxad119
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The accurate representation of objects holds pivotal significance in the realm of panoptic segmentation. Presently, prevalent object representation methodologies, including box-based, keypoint-based and query-based techniques, encounter a challenge known as the 'representation confusion' issue in specific scenarios, often resulting in the mislabeling of instances. In response, this paper introduces Convex Object Representation (COR), a straightforward yet highly effective approach to address this problem. COR leverages a CNN-based Euclidean Distance Transform to convert the target instance into a convex heatmap. Simultaneously, it offers a parallel embedding method for encoding the object. Subsequently, COR characterizes objects based on the distinctive embedding vectors of their convex vertices. This paper seamlessly integrates COR into a state-of-the-art query-based panoptic segmentation framework. Experimental findings validate that COR successfully mitigates the representation confusion predicament, enhancing segmentation accuracy. The COR-augmented methods exhibit notable improvements of +1.3 and +0.7 points in PQ on the Cityscapes validation and MS COCO panoptic 2017 validation datasets, respectively.
引用
下载
收藏
页码:2009 / 2019
页数:11
相关论文
共 50 条
  • [41] Shape Sparse Representation for Joint Object Classification and Segmentation
    Chen, Fei
    Yu, Huimin
    Hu, Roland
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (03) : 992 - 1004
  • [42] Panoptic Nuscenes: A Large-Scale Benchmark for LiDAR Panoptic Segmentation and Tracking
    Fong, Whye Kit
    Mohan, Rohit
    Hurtado, Juana Valeria
    Zhou, Lubing
    Caesar, Holger
    Beijbom, Oscar
    Valada, Abhinav
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3795 - 3802
  • [43] Panoptic Out-of-Distribution Segmentation
    Mohan, Rohit
    Kumaraswamy, Kiran
    Hurtado, Juana Valeria
    Petek, Kursat
    Valada, Abhinav
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4075 - 4082
  • [44] Panoptic-SLAM: Visual SLAM in Dynamic Environments using Panoptic Segmentation
    Abati, Gahriel Fischer
    Soares, Joao Carlos Virgolino
    Medeiros, Vivian Suzano
    Meggiolaro, Marco Antonio
    Semini, Claudio
    2024 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR 2024, 2024, : 762 - 769
  • [45] ChaInNet: Deep Chain Instance Segmentation Network for Panoptic Segmentation
    Lin Mao
    Fengzhi Ren
    Dawei Yang
    Rubo Zhang
    Neural Processing Letters, 2023, 55 : 615 - 630
  • [46] ChaInNet: Deep Chain Instance Segmentation Network for Panoptic Segmentation
    Mao, Lin
    Ren, Fengzhi
    Yang, Dawei
    Zhang, Rubo
    NEURAL PROCESSING LETTERS, 2023, 55 (01) : 615 - 630
  • [47] Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation
    Zhou, Zixiang
    Zhang, Yang
    Foroosh, Hassan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13189 - 13198
  • [48] Panoptic Segmentation of Galactic Structures in LSB Images
    Richards, Felix
    Paiement, Adeline
    Xie, Xianghua
    Sola, Elisabeth
    Duc, Pierre-Alain
    2023 18TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND APPLICATIONS, MVA, 2023,
  • [49] CoMFormer: Continual Learning in Semantic and Panoptic Segmentation
    Cermelli, Fabio
    Cord, Matthieu
    Douillard, Arthur
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3010 - 3020
  • [50] Panoptic segmentation with highly imbalanced semantic labels
    Rumberger, Josef Lorenz
    Baumann, Elias
    Hirsch, Peter
    Janowczyk, Andrew
    Zlobec, Inti
    Kainmueller, Dagmar
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING CHALLENGES (IEEE ISBI 2022), 2022,