Panoptic Segmentation with Convex Object Representation

被引:0
|
作者
Yao, Zhicheng [1 ,2 ]
Wang, Sa [1 ,2 ]
Zhu, Jinbin [1 ]
Bao, Yungang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd Zhongguancun, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, 1 Yanqihu East Rd, Beijing 101408, Peoples R China
来源
COMPUTER JOURNAL | 2023年 / 67卷 / 06期
基金
中国国家自然科学基金;
关键词
deep learning; computer vision; image segmentation; panoptic segmentation; instance representation;
D O I
10.1093/comjnl/bxad119
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The accurate representation of objects holds pivotal significance in the realm of panoptic segmentation. Presently, prevalent object representation methodologies, including box-based, keypoint-based and query-based techniques, encounter a challenge known as the 'representation confusion' issue in specific scenarios, often resulting in the mislabeling of instances. In response, this paper introduces Convex Object Representation (COR), a straightforward yet highly effective approach to address this problem. COR leverages a CNN-based Euclidean Distance Transform to convert the target instance into a convex heatmap. Simultaneously, it offers a parallel embedding method for encoding the object. Subsequently, COR characterizes objects based on the distinctive embedding vectors of their convex vertices. This paper seamlessly integrates COR into a state-of-the-art query-based panoptic segmentation framework. Experimental findings validate that COR successfully mitigates the representation confusion predicament, enhancing segmentation accuracy. The COR-augmented methods exhibit notable improvements of +1.3 and +0.7 points in PQ on the Cityscapes validation and MS COCO panoptic 2017 validation datasets, respectively.
引用
下载
收藏
页码:2009 / 2019
页数:11
相关论文
共 50 条
  • [21] Part-aware Panoptic Segmentation
    de Geus, Daan
    Meletis, Panagiotis
    Lu, Chenyang
    Wen, Xiaoxiao
    Dubbelman, Gijs
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5481 - 5490
  • [22] Single-Shot Panoptic Segmentation
    Weber, Mark
    Luiten, Jonathon
    Leibe, Bastian
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8476 - 8483
  • [23] Improving Panoptic Segmentation at All Scales
    Porzi, Lorenzo
    Bulo, Samuel Rota
    Kontschieder, Peter
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7298 - 7307
  • [24] Panoptic Segmentation Meets Remote Sensing
    de Carvalho, Osmar Luiz Ferreira
    de Carvalho Junior, Osmar Abilio
    Silva, Cristiano Rosa e
    de Albuquerque, Anesmar Olino
    Santana, Nickolas Castro
    Borges, Dibio Leandro
    Gomes, Roberto Arnaldo Trancoso
    Guimaraes, Renato Fontes
    REMOTE SENSING, 2022, 14 (04)
  • [25] Unifying Panoptic Segmentation for Autonomous Driving
    Zendel, Oliver
    Schoerghuber, Matthias
    Rainer, Bernhard
    Murschitz, Markus
    Beleznai, Csaba
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 21319 - 21328
  • [26] Pointly-Supervised Panoptic Segmentation
    Fan, Junsong
    Zhang, Zhaoxiang
    Tan, Tieniu
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 319 - 336
  • [27] Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation
    Borse, Shubhankar
    Park, Hyojin
    Cai, Hong
    Das, Debasmit
    Garrepalli, Risheek
    Porikli, Fatih
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1259 - 1269
  • [28] Fully Convolutional Networks for Panoptic Segmentation
    Li, Yanwei
    Zhao, Hengshuang
    Qi, Xiaojuan
    Wang, Liwei
    Li, Zeming
    Sun, Jian
    Jia, Jiaya
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 214 - 223
  • [29] A Unified Neural Network for Panoptic Segmentation
    Yao, L.
    Chyau, A.
    COMPUTER GRAPHICS FORUM, 2019, 38 (07) : 461 - 468
  • [30] LiDAR Panoptic Segmentation for Autonomous Driving
    Milioto, Andres
    Behley, Jens
    McCool, Chris
    Stachniss, Cyrill
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8505 - 8512