Panoptic Segmentation with Convex Object Representation

被引:0
|
作者
Yao, Zhicheng [1 ,2 ]
Wang, Sa [1 ,2 ]
Zhu, Jinbin [1 ]
Bao, Yungang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd Zhongguancun, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, 1 Yanqihu East Rd, Beijing 101408, Peoples R China
来源
COMPUTER JOURNAL | 2023年 / 67卷 / 06期
基金
中国国家自然科学基金;
关键词
deep learning; computer vision; image segmentation; panoptic segmentation; instance representation;
D O I
10.1093/comjnl/bxad119
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The accurate representation of objects holds pivotal significance in the realm of panoptic segmentation. Presently, prevalent object representation methodologies, including box-based, keypoint-based and query-based techniques, encounter a challenge known as the 'representation confusion' issue in specific scenarios, often resulting in the mislabeling of instances. In response, this paper introduces Convex Object Representation (COR), a straightforward yet highly effective approach to address this problem. COR leverages a CNN-based Euclidean Distance Transform to convert the target instance into a convex heatmap. Simultaneously, it offers a parallel embedding method for encoding the object. Subsequently, COR characterizes objects based on the distinctive embedding vectors of their convex vertices. This paper seamlessly integrates COR into a state-of-the-art query-based panoptic segmentation framework. Experimental findings validate that COR successfully mitigates the representation confusion predicament, enhancing segmentation accuracy. The COR-augmented methods exhibit notable improvements of +1.3 and +0.7 points in PQ on the Cityscapes validation and MS COCO panoptic 2017 validation datasets, respectively.
引用
收藏
页码:2009 / 2019
页数:11
相关论文
共 50 条
  • [31] DEEP MARKOV CLUSTERING FOR PANOPTIC SEGMENTATION
    Ye, Minxiang
    Zhang, Yifei
    Zhu, Shiqiang
    Xie, Anhuan
    Zhang, Dan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2380 - 2384
  • [32] EfficientLPS: Efficient LiDAR Panoptic Segmentation
    Sirohi, Kshitij
    Mohan, Rohit
    Buescher, Daniel
    Burgard, Wolfram
    Valada, Abhinav
    IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (03) : 1894 - 1914
  • [33] Lidar Panoptic Segmentation in an Open World
    Chakravarthy, Anirudh S.
    Ganesina, Meghana Reddy
    Hu, Peiyun
    Leal-Taixe, Laura
    Kong, Shu
    Ramanan, Deva
    Osep, Aljosa
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, : 1153 - 1174
  • [34] Depth-Aware Panoptic Segmentation
    Tuan Nguyen
    Mehltretter, Max
    Rottensteiner, Franz
    ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 153 - 161
  • [35] Panoptic Segmentation of Wounds in a Pig Model
    Tavolara, Thomas E.
    Jorgensen, Adam M.
    Gurcan, Metin N.
    Murphy, Sean, V
    Niazi, M. K. K.
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [36] Uncertainty-Aware Panoptic Segmentation
    Sirohi, Kshitij
    Marvi, Sajad
    Buescher, Daniel
    Burgard, Wolfram
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05): : 2629 - 2636
  • [37] CNN Based Transformer for Panoptic Segmentation
    Mao L.
    Ren F.-Z.
    Yang D.-W.
    Zhang R.-B.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (07): : 3408 - 3421
  • [38] UPSNet: A Unified Panoptic Segmentation Network
    Xiong, Yuwen
    Liao, Renjie
    Zhao, Hengshuang
    Hu, Rui
    Bai, Min
    Yumer, Ersin
    Urtasun, Raquel
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8810 - 8818
  • [39] Online video object segmentation via LRS representation
    Gu, Song
    Wang, Jian
    Du, Yingjie
    Zhang, Weirui
    Hao, Wei
    Zhou, Dongmei
    IET COMPUTER VISION, 2019, 13 (05) : 469 - 479
  • [40] A ridgelet representation of semantic object using watershed segmentation
    Hasegawa, M
    Tajima, S
    IEEE INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES 2004 (ISCIT 2004), PROCEEDINGS, VOLS 1 AND 2: SMART INFO-MEDIA SYSTEMS, 2004, : 441 - 444